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PROBLEM DEFINITION 

 

Safety:  

 “Nothing bad is going to happen to the system.” 

  

    Formally: 

  every execution remains within the safe region.  



STRATEGIES FOR SAFETY 

VERIFICATION 

Proving Safety :Determining every execution is safe 

Falsification: Finding a violating bug 

Outputs: 

• a counter example: A trajectory from a state in initial set to a 

state in unsafe set. (Falsification) 

• Proof that such counter example does not exists. (Verification) 



PARAMETERIZED 

CONTINUOUS SYSTEMS 

• Model for the system 

• State space 

• Time is bounded [0, T) 

• f is smooth (f belongs to         ) 

• There is an upper bound M on all derivatives of F on [0, T). 

• There should be a limit on how fast the system can 

evolve. 

• This assumptions are not limiting, since we are considering 

cyber-physical systems.  



CASE-STUDY 

Tank Systems 

 

 

 

 

 

 

Safety properties: 

  



SOLUTION FOR TANK 

SYSTEM 

                                  

 

Where: 
  

 and 
  

 are constants 
      

 and: 
                                   

 

 

So that the solution 
   

 for each tank 
  

 looks like: 
           

 
                                      

 

... 

 



PART I:  

LAPSES VERIFICATION 



LAPSES VERIFICATION FLOW 

Generating solution X for system

Approximate X using Taylor 
approximation Y of order p

Compute the maximum/minimum of  Y 
on [0,T)

Compute the error of |Y-X| on [0, T)

Approximation error > 
error margin?

Refinement:
increase Taylor 

order
p = p+1

Is Y safe?

Timeout / Unknown

Yes

safe region 

unsafe region 



OBJECTIVES 

• Finding maximum & minimum of the solution over bounded 

time [0, T) 

 

• Generally, there is no sound technique for computing 

max/min of unrestricted non-linear functions. 

 

• Sound technique for maximum/minimum/root finding of 

polynomial equations. 



TAYLOR 

APPROXIMATION 

Approximate solution of the system 
    

 using  

 single/multivariate Taylor approximation 
   

 

 

 

 

Where to expand? We know that in the expansion point 
 

: 

 
       

 

The error increases with the distance from 
  

 . Thus, we pick: 

  

    

 

Taylor is approximation. What is the bound on error over [0, T)? 



THE SALT LEVEL IN TANK SYSTEM 

X1 

Salt level x1 over [0, 10) in 

Original System, K1 = 2 
Salt level x1 over [0, 10) 

In Taylor expansion 



THE SALT LEVEL IN TANK SYSTEM 

X2 

T=0.2848 

Y=2.8080 

Salt level x1 over [0, 10) in 

Original System, K2 = 4 



MULTIVARIATE TAYLOR 

APPROXIMATION 

Similarly for evaluating the changes over more than one (time) 

dimension, we use multivariate Taylor approximation. 

 

 

 

 

 

Thus, the proposed method can be used to enforce safety 

properties involving a linear combination of constraints 

 



MULTIVARIATE ANALYSIS 

OF 

        
 



MULTIVARIATE ANALYSIS 

OF 

        
 – (CONT’D) 



TAYLOR REMAINDER 

Lagrange form: 

 

 

This is a function with a maximum in [0, T). Let: 

 

 

Under the assumption that the system does not evolve too quickly. Then 

 

 

 

N.B. 
    

 grows very quickly. 

 Even for large 
 

 we converge very fast.   



VERIFYING THE 

APPROXIMATION 

Lemma: 

 

 

1. We compute the maximum of Y (Taylor approximation). 

2. If ( 

     
) is safe, then 

  
is safe. 

3. Otherwise either: 

i. Our approximation is too crude. 

ii. The system is unsafe. 

4. Refinement: increase Taylor expansion order 

 

 

 



PART II:  

LAPSES FALSIFICATION 



LAPSES:  

FINDING VIOLATING TRACE 

System model generation in Z3 

• Template for modeling the system in Python 

• System equation generation using computer algebraic 

systems 

• Given the result to Z3 to simulate 

• Z3 outputs: 

• SAT, 

• Unknown 

 







EXAMPLE EXECUTION 



FUTURE WORKS 

 

Computing the upper bound 

 
 on derivatives of 

 
 

 

 

 

 

Extend small model theorem (SMT) for continuous 

dynamics 

 



TOOL REMARKS 

• Requirement: 

• SMT solver + Nonlinearity support + easy debugging 

 

• Initially we used iSAT for nonlinear systems. 

• Claims it supports nonlinearity 

• But it is limited to the most basic systems.  

• Didn’t worked for us 

 

• Moving on to Z3 



Z3 - LIMITATIONS 

• Z3 worked well for simulation. Supported basic nonlinearity  

 

• Didn’t support nonlinear equations with existential 

quantifiers  

 

• We didn’t want to substitute the nonlinear with linearized 

system 

 

• So we constructed our own approximation using Taylor.  



THANK YOU 



PROVING SAFETY 

Invariant Generation for Systems 

Approximating systems using Taylor approximation 

Finding the bound on approximation error 

 

If approximation error is within the error bound 

 Is safety verified? :)  

Else 

 Refine approximation 



VERIFICATION IN Z3 

t = Real('t') 

x = Real('x') 

 

s = Solver() 

s.set(auto_config=False, mbqi=False) 

 

s.add( ForAll(t, x<30), 

     x<10, 

     x>0, 

     t>0, 

     t<5) 

 

# Display solver state using internal format 

print s.sexpr() 

print s.check() 

 


