Obstacle-
Avoidance
Verification
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification

Obstacle-Avoidance Verification for a Switched Control Strategy

Ray Essick

December 16, 2012

Outline

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification
(1) Motivation
(2) Control of Switched Systems
(3) 3DOF Modeling

4 SpaceEx Verification

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification

Motivation

I
 A Motivating Example

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification

A Motivating Example

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling

- Trajectory known up to a finite future horizon

A Motivating Example

Obstacle-
Avoidance
Verification

for a Switched

Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling

- Trajectory known up to a finite future horizon
- Set of possible future trajectories known.

Hybrid System Model

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

- Model behavior as a hybrid system
- Continuous-state dynamics
- Discrete switching in plant parameters

Hybrid System Model

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification

- Model behavior as a hybrid system
- Continuous-state dynamics
- Discrete switching in plant parameters
- Can we guarantee trajectory tracking?
- Yes, using a switching controller.

Hybrid System Model

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx Verification

- Model behavior as a hybrid system
- Continuous-state dynamics
- Discrete switching in plant parameters
- Can we guarantee trajectory tracking?
- Yes, using a switching controller.
- Can we guarantee collision avoidance?
- Analysis using SpaceEx

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems

Control of Switched Systems

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of Switched
Systems
3DOF
Modeling
SpaceEx
Verification

- A collection of (linear) plant parameters

Switched linear systems

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

- A collection of (linear) plant parameters
- Discrete switching logic selects the parameters at each time

Switched linear systems

Obstacle-
Avoidance
Verification

for a Switched

Control
Strategy
Ray Essick

Motivation
Control of Switched Systems

- A collection of (linear) plant parameters
- Discrete switching logic selects the parameters at each time
- Switching graph is known, but exact switching sequence is not

Switched linear systems

Obstacle-
Avoidance
Verification

for a Switched

Control
Strategy
Ray Essick

Motivation
Control of Switched Systems

- A collection of (linear) plant parameters
- Discrete switching logic selects the parameters at each time
- Switching graph is known, but exact switching sequence is not
- System dynamics given by

$$
\begin{aligned}
x_{t+1} & =A_{\theta(t)} x_{t}+B_{\theta(t)} w_{t} \\
z_{t} & =C_{\theta(t)} x_{t}+D_{\theta(t)} w_{t}
\end{aligned}
$$

Obstacle-
Avoidance Verification
Motivation
Control of
Switched
Systems

- Controller has access to plant output and switching signal

Finite-path controllers

Obstacle-
Avoidance
Verification

- Controller has access to plant output and switching signal
- Perfect observation/memory of current, past modes

Finite-path controllers

Obstacle-
Avoidance
Verification

- Controller has access to plant output and switching signal
- Perfect observation/memory of current, past modes
- Preview of a finite-horizon of future modes

Motivation

Finite-path controllers

Obstacle-
Avoidance
Verification

for a Switched

Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling

- Controller has access to plant output and switching signal
- Perfect observation/memory of current, past modes
- Preview of a finite-horizon of future modes
- Controller parameters depend on this switching path

ℓ_{2}-induced-norm performance

Obstacle-
Avoidance Verification for a Switched Control
Strategy
Ray Essick

Motivation
Control of Switched Systems

Modeling

ℓ_{2}-induced-norm performance

Obstacle-
Avoidance Verification for a Switched

Control
Strategy
Ray Essick

Motivation
Control of Switched Systems

Is there a stabilizing controller which bounds the system norm $w \mapsto z$ uniformly?

Brief summary of proof strategy

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

- Find a (finite) collection of Lyapunov functions

Motivation
Control of
Switched
Systems

Brief summary of proof strategy

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation

- Find a (finite) collection of Lyapunov functions
- Arrange them in the correct order for each possible switching sequence

Brief summary of proof strategy

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems

- Find a (finite) collection of Lyapunov functions
- Arrange them in the correct order for each possible switching sequence
- Size of collection is dependent on the length of the switching window

Brief summary of proof strategy

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems

- Find a (finite) collection of Lyapunov functions
- Arrange them in the correct order for each possible switching sequence
- Size of collection is dependent on the length of the switching window
- Conditions are both necessary and sufficient

Existence conditions for a controller

Obstacle-
Avoidance Verification for a Switched Control
Strategy
Ray Essick

Motivation
Control of Switched Systems

There exists a controller with $L \geq 0$ and $H \geq 0$ achieving attenuation level γ if and only if there exist an integer $M \geq 0$ and matrices $R_{j} \succ 0, S_{j} \succ 0$ such that

$$
\begin{aligned}
& N_{F, i_{0}}^{T}\left[\begin{array}{ccc}
A_{i_{0}} R_{i_{-}} A_{i_{0}}^{T}-R_{i_{+}} & A_{i_{0}} R_{i_{-}} C_{1, i_{0}}^{T} & B_{1, i_{0}} \\
C_{1, i_{0}} R_{-} A_{i_{0}}^{T} & C_{1, i_{0}} R_{i_{-}} C_{1, i_{0}}^{T}-\gamma I & D_{11, i_{0}}^{T} \\
B_{1, i_{0}}^{T} & D_{11, i_{0}}^{T} & -\gamma
\end{array}\right] N_{F, i_{0}} \prec 0 \\
& N_{G, i_{0}}^{T}\left[\begin{array}{ccc}
A_{i_{0}}^{T} S_{i_{+}} A_{i_{0}}-S_{i_{-}} & A_{i_{0}}^{T} S_{i_{+}} B_{1, i_{0}} & C_{1, i_{0}}^{T} \\
B_{1, i_{0}}^{T} S_{i_{+}} A_{i_{0}} & B_{1, i_{0}}^{T} S_{i_{+}} B_{1, i_{0}}-\gamma I & D_{11, i_{0}}^{T} \\
C_{1, i_{0}} & -\gamma I
\end{array}\right] N_{G, i_{0}} \prec 0 \\
& {\left[\begin{array}{cc}
R_{i} \\
I & S_{i_{-}} \\
I & \succeq 0
\end{array}\right.}
\end{aligned}
$$

for all admissible sequences $i_{-L-M: H}$, where $i_{-}=i_{(-L-M: H-1)}, i_{+}=i_{(-L-M+1: H)}$ and

$$
N_{F, i}=\left[\begin{array}{ccc}
N\left(\left[\begin{array}{cc}
B_{2, i}^{T} & D_{12, i}^{T}
\end{array}\right]\right. & 0 \\
0 & I
\end{array}\right], \quad N_{G, i}=\left[\begin{array}{ccc}
N\left(\left[C_{2, i}\right.\right. & \left.\left.D_{21, i}\right]\right) & 0 \\
& 0 & I
\end{array}\right]
$$

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems

3DOF Modeling

3DOF helicopter system

Obstacle-
Avoidance
Verification
\section*{for a Switched}
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification
${ }^{1}$ C.W. Dever, "Parameterized maneuvers for autonomous vehicles," Ph.D. dissertation, Dept. Mech. Eng., Massachusetts Institute of Technology, Cambridge, 2004 (

3DOF helicopter system

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification

- Tabletop mounted system from Quanser Consulting

3DOF helicopter system

Obstacle-
Avoidance
Verification

for a Switched

Control
Strategy
Ray Essick

Motivation
Control of Switched Systems

3DOF

Modeling

- Tabletop mounted system from Quanser Consulting
- Nonlinear dynamics ${ }^{1}$ are given by

$$
\begin{aligned}
\ddot{\phi} & =-0.0252 \dot{\phi}-0.0525 V_{c}^{2} \sin (\psi-0.0827) \\
\ddot{\beta} & =-0.112 \dot{\beta}-0.243 \beta-0.504 \sin \beta+0.04 \dot{\phi}^{2} \\
& +0.0905 V_{c}^{2} \cos \psi \\
\ddot{\psi} & =-0.163 \dot{\psi}-1.58 \sin \psi+0.131-0.449 \dot{\phi}^{2}+1.42 V_{c} V_{y}
\end{aligned}
$$

${ }^{1}$ C.W. Dever, "Parameterized maneuvers for autonomous vehicles," Ph.D. dissertation, Dept. Mech. Eng., Massachusetts Institute of Technology, Cambridge, 2004

Reference trajectory and linearization

Obstacle-
Avoidance
Verification for a Switched Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification

- Helicopter will travel along $\dot{\phi}_{r}=-1 \mathrm{rad} / \mathrm{s}$ and $\beta_{r}=0.2618 \mathrm{rad}$

Reference trajectory and linearization

Obstacle-
Avoidance
Verification for a Switched Control
Strategy
Ray Essick

- Helicopter will travel along $\dot{\phi}_{r}=-1 \mathrm{rad} / \mathrm{s}$ and $\beta_{r}=0.2618 \mathrm{rad}$
- Modification of hover dynamics (non-zero $\dot{\phi}_{r}$) with disturbance

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification

Reference trajectory and linearization

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched Systems

3DOF

Modeling
SpaceEx Verification

- Helicopter will travel along $\dot{\phi}_{r}=-1 \mathrm{rad} / \mathrm{s}$ and $\beta_{r}=0.2618 \mathrm{rad}$
- Modification of hover dynamics (non-zero $\dot{\phi}_{r}$) with disturbance
- Resulting system:

$$
\begin{aligned}
\ddot{\phi} & =-.257 \psi-0.0839 \dot{\phi}+w_{1} \\
\ddot{\beta} & =-.504 \beta-.112 \dot{\beta}+1.34 \tau_{c}+w_{2} \\
\ddot{\psi} & =-1.58 \psi-.163 \dot{\psi}+16.2 \tau_{y}+w_{3} \\
\dot{\tau_{c}} & =-6.16 \tau_{c}+V_{c} \\
\dot{\tau}_{y} & =-7.32 \tau_{y}+V_{y}
\end{aligned}
$$

Critical outputs

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

- Introduce an obstacle underneath the reference trajectory
- Far from obstacle, matching $\dot{\phi}_{r}$ and β_{r} are equally important
- Over obstacle, controlling β is much more important

Critical outputs

Obstacle-
Avoidance
Verification

for a Switched

Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx Verification

- Introduce an obstacle underneath the reference trajectory
- Far from obstacle, matching $\dot{\phi}_{r}$ and β_{r} are equally important
- Over obstacle, controlling β is much more important
- Lowest point on the helicopter is given by

$$
\zeta=0.66 \sin \beta-.277 \sin \psi
$$

Critical outputs

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx Verification

- Introduce an obstacle underneath the reference trajectory
- Far from obstacle, matching $\dot{\phi}_{r}$ and β_{r} are equally important
- Over obstacle, controlling β is much more important
- Lowest point on the helicopter is given by

$$
\zeta=0.66 \sin \beta-.277 \sin \psi
$$

- For reference tracking, introduce the integral error ξ such that $\dot{\xi}=\zeta-\zeta_{r}$

Critical outputs

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx Verification

- Introduce an obstacle underneath the reference trajectory
- Far from obstacle, matching $\dot{\phi}_{r}$ and β_{r} are equally important
- Over obstacle, controlling β is much more important
- Lowest point on the helicopter is given by

$$
\zeta=0.66 \sin \beta-.277 \sin \psi
$$

- For reference tracking, introduce the integral error ξ such that $\dot{\xi}=\zeta-\zeta_{r}$
- When near an obstacle, ζ and ξ represent "critical" outputs.

Weighting of critical outputs

Obstacle-
Avoidance Verification for a Switched Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification

- Trade-off between altitude (ζ, ξ) and travel $(\phi, \dot{\phi})$

Weighting of critical outputs

Obstacle-
Avoidance Verification for a Switched Control
Strategy
Ray Essick

- Trade-off between altitude (ζ, ξ) and travel $(\phi, \dot{\phi})$
- Assign weighting based on proximity to obstacle

Weighting of critical outputs

Obstacle-
Avoidance
Verification

for a Switched

Control
Strategy
Ray Essick

Motivation

Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification

- Trade-off between altitude (ζ, ξ) and travel $(\phi, \dot{\phi})$
- Assign weighting based on proximity to obstacle
- Let $\delta \in[0,1]$ be a "danger" parameter

Weighting of critical outputs

Obstacle-
Avoidance
Verification

for a Switched

Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification

- Trade-off between altitude (ζ, ξ) and travel $(\phi, \dot{\phi})$
- Assign weighting based on proximity to obstacle
- Let $\delta \in[0,1]$ be a "danger" parameter
- Controlled output given by

$$
z=\left[\begin{array}{c}
(1-.9 \delta)(\phi+0.5 \dot{\phi}) \\
(1+.9 \delta)(\zeta+0.1 \xi) \\
.25 V_{c} \\
.25 V_{y}
\end{array}\right]
$$

Constructing the switching graph

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

- Approximate continuous variable δ by discrete levels
- More levels for finer control, higher complexity

Constructing the switching graph

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

- Approximate continuous variable δ by discrete levels
- More levels for finer control, higher complexity
- Select five levels: $\delta \in\{0, .25, .5, .75,1\}$

Constructing the switching graph

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx Verification

- Approximate continuous variable δ by discrete levels
- More levels for finer control, higher complexity
- Select five levels: $\delta \in\{0, .25, .5, .75,1\}$
- Allow δ to switch between adjacent values, or to remain at either 0 or 1 .

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

- Solving the existence conditions for this system produces a suitable modal controller.

Selecting a suitable controller

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling
SpaceEx
Verification

- Solving the existence conditions for this system produces a suitable modal controller.
- Path-dependent controllers are also possible

Selecting a suitable controller

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling

- Solving the existence conditions for this system produces a suitable modal controller.
- Path-dependent controllers are also possible
- Improvements to the uniform system gain possible with increased information
- For now, consider the modal controller.

Selecting a suitable controller

- Solving the existence conditions for this system produces a suitable modal controller.
- Path-dependent controllers are also possible
- Improvements to the uniform system gain possible with increased information
- Number of controller modes grows quickly
- For now, consider the modal controller.

Obstacle－
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems

SpaceEx Verification

3DOF

Modeling

SpaceEx

Verification

Reachability and collision avoidance

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation

- Does the altitude error ever grow large enough to cause a collision?
- What is the reachable set of plant states?

Reachability and collision avoidance

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation

Control of
Switched
Systems
3DOF
Modeling

- Does the altitude error ever grow large enough to cause a collision?
- What is the reachable set of plant states?
- Implement closed-loop system model in SpaceEx

Reachability and collision avoidance

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling

- Does the altitude error ever grow large enough to cause a collision?
- What is the reachable set of plant states?
- Implement closed-loop system model in SpaceEx
- Determine bounds on critical outputs

Computational Difficulties

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

- Computation of reachable states is large

Motivation
Control of
Switched
Systems
3DOF
Modeling

SpaceEx

 VerificationObstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

- Computation of reachable states is large
- Nine plant states; nine controller states

Computational Difficulties

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

- Computation of reachable states is large
- Nine plant states; nine controller states
- Three inputs, eight outputs
- Very poor performance on a single machine

Computational Difficulties

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling

- Computation of reachable states is large
- Nine plant states; nine controller states
- Three inputs, eight outputs
- Very poor performance on a single machine
- Bounds can be placed on w at each time, but not on total signal norm

Computational Difficulties

- Computation of reachable states is large
- Nine plant states; nine controller states
- Three inputs, eight outputs
- Very poor performance on a single machine
- Bounds can be placed on w at each time, but not on total signal norm
- Result: Bounds on reachable states are insufficient to guarantee collision avoidance

Results and future work

Obstacle-
Avoidance Verification for a Switched Control Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling

SpaceEx

 Verification- Reachability approximations are not sufficient to guarantee collision avoidance
- Overapproximations - do not invalidate design strategy

Results and future work

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

- Reachability approximations are not sufficient to guarantee collision avoidance
- Overapproximations - do not invalidate design strategy
- Possible solutions:
- Improved hardware - parallel algorithms for efficient search.

Results and future work

Obstacle-
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems
3DOF
Modeling

- Reachability approximations are not sufficient to guarantee collision avoidance
- Overapproximations - do not invalidate design strategy
- Possible solutions:
- Improved hardware - parallel algorithms for efficient search.
- Formal verification - find worst-case switching logic/disturbance

Questions？

Obstacle－
Avoidance
Verification
for a Switched
Control
Strategy
Ray Essick

Motivation
Control of
Switched
Systems

Thank you！

