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Obstacle-avoidance verification for a switched
control strategy

Ray Essick

Abstract—We present a case study of a trajectory regulation
problem for a three degrees-of-freedom helicopter system which
approaches an obstacle during operation. While the helicopter
is close to the obstacle, the controller strategy must focus on
a ”critical output” to prevent a collision. We first model the
nonlinear helicopter plant as a switched linear system whose
modes correspond to operation near to and far from the obstacle.
A recent result in controller synthesis for switched systems is
used to determine a suitable controller for guaranteeing closed-
loop stability and a performance gain. The closed-loop system
is then modeled as a hybrid system which is analyzed using
SpaceEx. An overapproximation of the reachable set is computed,
but is insufficient to guarantee the collision-avoidance property,
suggesting modifications to the hybrid model used.

I. INTRODUCTION

The hybrid systems model is increasingly used as a means
of combining continuous-state dynamics with discrete logic
to model complex systems such as networked control sys-
tems ([5], [8]), distributed networks of autonomous vehicles
([7], [9]), and biological and chemical processes ([1], [11]).
Methods of designing controllers for such systems focus
principally on stabilization and also minimizing some output
criterion, often either the system norm (`2-induced) or output
variance. While a number of techniques exist for guaranteeing
these properties, they are typically focused on the steady-state
or long-term behavior of the system, with few guarantees
on transient system performance. The verification of hybrid
systems, on the other hand, often focuses on the proving of
invariant sets within which the reachable states of the system
are contained. Such results give a proof that system safety
properties, such as collision avoidance, are correct with little
information on the evolution of the system within the reachable
states.

We wish to combine the tools from both control theory
and hybrid systems verification to design a controller which
achieves good trajectory tracking while also guaranteeing
collision avoidance. We will consider the three degrees-of-
freedom helicopter plant shown in Figure 1 for our study.
During operation, the helicopter will pass close to an obstacle,
presenting the possibility of a collision. We will develop a
linear model for the system with switching dynamics, and
use a recent result in switched system theory to synthesize
a suitable controller which guarantees trajectory tracking. We
will then implement the closed-loop system in the SpaceEx
analysis tool and attempt to verify the reachable set of the
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Fig. 1. The Quansar 3DOF helicopter plant

system. Although our analysis does not guarantee the collision-
avoidance property we are seeking, we will present several
options for future development in this area.

We begin by reviewing our result for controller synthesis
for switched linear systems in Section II. Next, in Section III
we will develop the dynamics of the 3DOF helicopter system
and design our controller. In Section IV we will outline the
modeling scheme used in SpaceEx. Finally, Section V presents
an outline of future work for effective reachability verification.

II. DISTURBANCE ATTENUATION IN SWITCHED SYSTEMS

A switched linear system is an LTV system whose param-
eters at each time step are selected from a finite set. That is,
the system parameters are described by an indexed set

{(Ai, B1,i, B2,i, C1,i, C2,i, D11,i, D12,i, D21,i)}, i = 1, . . . , N
(1)

and governed by dynamics of the form

xt+1 = Aθ(t)xt +B1,θ(t)wt +B2,θ(t)ut

zt = C1,θ(t)xt +D11,θ(t)wt +D12,θ(t)ut

yt = C2,θ(t)xt +D21,θ(t)wt

(2)

Here the sequence θ : Z+ → {1, . . . , N} is a switching
sequence that determines, at each time t ≥ 0, which of
the system parameters are used at that time. The switching
dynamics are described by a matrix Q ∈ {0, 1}N×N , which
represents the adjacency matrix of a directed graph. An
admissible switching sequence is a sequence (finite or infinite)
which represents a valid walk through this directed graph.
Throughout this paper we will assume that Q is a strongly
connected graph; that is, a path exists between any two modes.

Definition 1: A switched linear system is called uniformly
exponentially stable there exist constants c ≥ 1 and λ ∈ (0, 1)
such that for every admissible switching sequence θ and all
k ≥ 0

‖Aθ(t+k) · . . . ·Aθ(t)‖ ≤ cλk (3)
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for all t ≥ 0.
In addition to examining the stability of the system, we also

wish to bound the `2-induced system norm from disturbance
input w to controlled output z for the system, according to the
following definition.

Definition 2: A switched linear system satisfies disturbance
attenuation level γ > 0 if for every admissible switching
sequence θ, the system satisfies

‖z‖22 < γ2‖w‖22 (4)

or, equivalently, if the system satisfies

sup
w

‖z‖
‖w‖

< γ

We will connect this system in output feedback with a finite-
path dependent controller. The controller is given access to
the observed output yt at each time, as well as access to a
portion of the switching signal. We permit perfect observation
and memory of the current mode and L ≥ 0 past modes; we
also allow a preview of H ≥ 0 future switching modes. The
resulting controller gains are dependent on the finite-length
switching signal θ(t−L:t+H) = (θ(t − L), . . . , θ(t + H)) and
yield the following controller dynamics.

x̂t+1 = Âθ(t−L:t+H)
x̂t + B̂θ(t−L:t+H)

yt

ut = Ĉθ(t−L:t+H)
x̂t + D̂θ(t−L:t+H)

yt
(5)

The existence of such a controller such that the closed-loop
system is both uniformly exponentially stable and uniformly
strictly contractive is characterized in the following result
(from [4]) in the form of a family of semidefinite programming
problems.

Theorem 3: There exists a controller with memory L ≥
0 and horizon H ≥ 0 achieving uniform stabilization and
attenuation level γ for the closed-loop system of (??) if and
only if there exist an integer M ≥ 0 and matrices Rj � 0,
Sj � 0 for j ∈ {1, . . . , N}L+M+H such that[

NF,i0 0
0 I

]T
×

 Ai0Ri(−L−M:H−1)
ATi0 −Ri(−L−M+1:H)

C1,i0Ri(−L−M:H−1)
ATi0

BT1,i0
Ai0Ri(−L−M:H−1)

CT1,i0 B1,i0

C1,i0Ri(−L−M:H−1)
CT1,i0 − γI D11,i0

DT
11,i0

−γI


×
[
NF,i0 0

0 I

]
≺ 0 (6a)[

NG,i0 0
0 I

]T
×

 ATi0Si(−L−M+1:H)
Ai0 − Si(−L−M:H−1)

BT1,i0Si(−L−M+1:H)
Ai0

C1,i0

ATi0Si(−L−M+1:H)
B1,i0 CT1,i0

BT1,i0Si(−L−M+1:H)
B1,i0 − γI DT

11,i0

D11,i0 −γI



×
[
NG,i0 0

0 I

]
≺ 0 (6b)[

Ri(−L−M:H−1)
I

I Si(−L−M:H−1)

]
� 0 (6c)

for all admissible sequences i(−L−M :H), where the operator
N(X) denotes any full-rank matrix Y such that Im (X) =
null(y) and

NF,i = N(
[
BT2,i DT

12,i

]
); NG,i = N(

[
C2,i D21,i

]
)

A feasible solution to the inequalities described above
allows for the construction of a controller which guarantees
both stability and disturbance attenuation. The controller exis-
tence and synthesis computations can all be completed offline,
leading to a collection of controllers indexed by finite-length
switching paths. Online implementation of the controller con-
sists of observing the switching path information given at each
time step and selecting the corresponding controller.

III. SYSTEM MODELING AND CONTROLLER SYNTHESIS

The system we wish to control is the 3DOF helicopter
shown in Figure 1, which is a tabletop mounted system from
Quanser Consulting [10]. The plant consists of a centrally
mounted arm which may rotate freely about the base, with
a counterweight at one end and the helicopter body at the
other. The helicopter has two propellers which are joined by a
nacelle which can rotate freely about the end of the arm. The
travel φ denotes the rotation of the arm around the vertical axis
through the base, measured positive in the clockwise direction
when viewed from above. The elevation β gives the angular
elevation of the bar, measured upwards from level. The pitch
angle ψ denotes the rotation of the nacelle about the end of
the arm, measured positive in the clockwise direction when
viewed radially inward. We set β = 0 when the arm is level,
ψ = 0 when the nacelle is level, and take φ = 0 to be the arm
travel at startup.

We begin by modeling the flight dynamics of the system. A
nonlinear model of this system is developed in [3] and gives
the following equations:

φ̈ = − 0.0252φ̇− 0.0525V 2
c sin(ψ − 0.0827) (7)

β̈ = − 0.112β̇ − 0.243 cosβ − 0.504 sinβ + 0.04φ̇2

+ 0.0905V 2
c cosψ (8)

ψ̈ = − 0.163ψ̇ − 1.58 sinψ + 0.131− 0.449ψ̇2 + 1.42VcVy
(9)

in which Vc = Vf + Vr and Vy = Vf − Vy , where Vf and
Vy denote the voltages to the front motor and rear motor. The
voltages are measured in volts, all angles are measured in
radians, and time is measured in seconds. We wish to control
the helicopter along the reference trajectory of φ̇r = −1 rad/s
and βr = 0.2618 rad. As the helicopter moves along this
trajectory, an obstacle is introduced in the form of a box whose
height is slightly less than that of the reference trajectory.
When the helicopter is operating near the box, the elevation of
the helicopter (specifically, of the leading edge of the nacelle)
is a critical output of the system for avoiding a collision.
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We now develop a linearized model of the system above,
which is based on the linear hover model found in [3]. For this
hover model all angular velocities are set to zero, while the
elevation angle β = βr is set to our reference elevation. The
pitch angle ψ must be set to 0.0827 radians to counterbalance
the net torque caused by the two propellers. To these dynamics
we add a disturbance input w, which can affect each of the
three degrees of freedom independently. The resulting linear
system has inputs V̄c and V̄y , and introduces two torques τ̄c
and τ̄y , with the resulting linearized dynamics:

˙̄τc = −6.16τ̄c + V̄c
˙̄τy = −7.32τ̄y + V̄y
¨̄φ = −0.0839 ˙̄φ− 0.257ψ̄ + w1

¨̄β = −0.112 ˙̄β − 0.504β̄ + 1.34τ̄c + w2

¨̄ψ = −0.163 ˙̄ψ − 1.58ψ̄ + 16.2τ̄y + w3

We will introduce one additional state which is related to
the position of the front corner of the helicopter nacelle.
While the helicopter is following the reference trajectory, this
corner is the lowest point on the body of the helicopter and
therefore critical for collision avoidance. The vertical position
of this corner above the plane where β = 0 is given by
ζ = 0.66 sinβ − 0.277 sinψ. We will define the integral state
ξ̄ with the dynamics ˙̄xi = (0.66) cosβrβ̄−0.277 cosψrψ̄ = ζ̄.

The resulting system has the state vector x =[
φ̄, β̄, ψ̄, ˙̄φ, ˙̄β, ˙̄ψ, τc, τy, ξ

]
, along with the disturbance w and

input u =
[
Vc Vy

]
and obeys the continuous-time dynamics

described above. We discretize these dynamics with a time
interval h = 0.05s to produce a discrete-time system.

During operation, the helicopter trajectory will pass directly
above a box whose height is only slightly below the reference
height for the system. While the helicopter is flying above
the box, guaranteeing collision avoidance becomes the most
important property for the system. The front corner of the
helicopter nacelle, described by ζ above, represents the lowest
point on the model and therefore the point where a collision
will occur. It is therefore important that the controller focus
on this ”critical” output while near an obstacle.

From the dynamics of the system, it is clear that a trade-
off must be made between tracking the reference angular
velocity φ̇r and the reference height βr; increasing the height
of the helicopter beta involves reducing the nacelle angle ψ
and slowing the system down, while increasing the speed
φ̇ requires increasing this angle and lowering the altitude.
In order that the controller favor altitude control while near
an obstacle, we introduce a controlled output which weights
these two criteria according to some danger parameter δ. We
suppose that δ is some function of distance to the obstacle,
with δ = 0 when far from the box and δ = 1 while directly
over it. We then introduce the controlled output of the system
given by

z =


(1− 0.9δ)( ˙̄φ+ 0.5φ̄)
(1 + 0.9δ)(ζ + 0.1ξ)

0.25Vc
0.25Vy

 (10)

δ = 0 δ = 0.25 δ = 0.5

δ = 0.75δ = 1

Fig. 2. The switching graph between modes for the controlled output of the
system.

Using this output, when the helicopter is far from the obstacle
(δ = 0) the two reference objectives of altitude (ζ, ξ) and
velocity (φ̄, ˙̄φ) are penalized equally. When near the obstacle
(δ = 1) the altitude of the helicopter is weighted much more
significantly than the velocity.

While the parameter δ could be taken as a continuous
function of helicopter position, we introduce discrete levels to
produce a finite number of system modes and corresponding
outputs. There is a design trade-off made here between the
complexity of the model and the precise location of the
helicopter relative to the obstacle. In order to balance these
two considerations, we give our system a total of five modes,
corresponding to δ values of 0, 0.25, 0.5, 0.75, and 1. In each
mode the system dynamics remain the same, as does the
observed output y =

[
φ, β, ψ, ξ

]
. Since we assume that the

helicopter approaches and leaves the obstacle in a smooth way,
we will suppose that the system may transition from adjacent
values of δ, or else remain at a value of δ = 0 or 1. The
resulting switching graph is shown in Figure 2.

We have now modeled our system as a switched linear
system, and can apply the result of Theorem 3 to search for
a suitable controller. We discover that the simplest possible
case, a modal controller, exists which achieves a system norm
of γ = 2.5. Searching for a path-dependent controller produces
more complex controllers which can reduce this value slightly;
however, this improved performance comes at an increase in
the number of controller modes and memory. Since very little
time will be spent where the controller is switching between
δ = 0 and δ = 1, the added complexity will not help with
performance near the obstacle. We therefore settle for the
modal controller, which has five modes and nine states of its
own. The gains selected are given in the appendix.

IV. CLOSED-LOOP SAFETY VERIFICATION

With a controller in hand, we move to the collision-
avoidance verification problem. Our approach is to model the
closed-loop system as a hybrid system using the SpaceEx
analysis tool and attempt to compute the reachable set of
system states. Ideally, no element of this set will have a value
of ζ large enough to cause a collision.
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Fig. 3. The SpaceEx helicopter model.

Fig. 4. The SpaceEx controller model.

The SpaceEx modeling framework allows us to construct
separate hybrid systems for the helicopter plant and controller,
and then network them together to form a composite hybrid
system. We take this approach to allow for easy modification
of either the plant dynamics or control law independent of
the other component. Since the plant dynamics are identical
for every output mode, we model the helicopter with a single
mode under which the system states evolve according to the
continuous-time dynamics of Section III. This single mode is
paired with transitions corresponding to switching into each of
the five output modes. At each time step, the system follows
one of these transitions and updates the values of both the
controlled and observed outputs, as well as a variable storing
the current mode. The values of the outputs remain constant
between information updates, as the controller dynamics are
still discrete. Figure 3 shows a graphical representation of the
helicopter model.

The controller dynamics remain discrete and the control
output from the controller remains constant between updates,
so the controller is also modeled as a single mode with
transitions for updating the controller state and control output.
When the plant takes a transition, the controller takes the
corresponding transition and updates the control law and its
internal state according to the newly updated observed output
of the system. The SpaceEx model for the controller is shown
in Figure 4

The helicopter and controller model are connected together

to form a feedback loop, providing a composite hybrid system
which accepts as inputs the disturbances w1, w2, w3 and
as outputs the controlled components z1, z2, z3, z4. Uniform
bounds are placed on the magnitude of the disturbances at each
time step, and the resulting system is simulated to determine
an approximation of the feasible set. The analysis was run on
a laptop featuring a 1.5 Ghz processor with 4 Gb of memory,
implementing a virtual Linux machine with access to 1 Gb of
memory.

The resulting feasibility analysis of this hybrid model
proved almost completely unusable for determining a bound on
the magnitude of the nacelle position ζ. Repeated analysis of
the model yielded either an overly conservative approximation
which could not tightly bound the behavior of the system, or
else quickly became intractable.

V. FUTURE WORK

Despite the failure of our initial model to tightly bound
the reachable set of states, several promising alterations are
suggested by the errors we faced. First, in order to ensure
good performance for stabilization, the switching controller
was designed with a time step of h = 0.05s, allowing the
controller to rapidly switch. In modeling the dynamics of the
helicopter, we produce an observed output each time step,
but additionally allow the system mode to switch at this
frequency. As a result, the model we simulate may switch
between being far from (δ = 0) and near to (δ = 1) the
obstacle as often as every 0.25 seconds. This switching rate
is much faster than we would normally see as the physical
system approaches a real obstacle. Modifying the system such
that the controller updates very quickly, while the plant mode
switches on a much slower time scale would greatly reduce
the growth of reachable states due to switching. Alternately,
we could use multiple timers to enforce a particular output
switching to correspond to some fixed obstacle approach. This
approach would effectively eliminate the nondeterminism from
the system switching, however, and require that the simulation
be run for many different possible obstacle profiles in order
to verify obstacle avoidance.

In addition, the model fails to correctly limit the disturbance
signal w to correspond to a bounded (in the 2-norm) signal.
The controller design cannot uniformly bound system output
for any disturbance; the bound is a function of the norm of
the disturbance. In order to accurately predict the collision
properties of the system, we should place bounds on the norm
of w rather than on the magnitude at each time step. Finding
a way to properly measure and bound the 2-norm of a signal
in SpaceEx will improve future models.

APPENDIX

The controller design uses five modes, according to the
feedback law

x̂t+1 = Âθ(t)x̂t + B̂θ(t)yt

ut = Ĉθ(t)x̂t + D̂θ(t)yt
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The gains for each controller mode are given by:

A1 =



0.279 −0.016 −0.020 −0.012 −0.020
−1.063 0.388 −0.104 0.009 −0.099
2.689 0.309 0.779 0.037 0.202
3.368 −0.737 −0.156 0.788 0.048
2.773 0.347 0.174 0.035 0.649
−0.004 0.002 0.001 −0.000 −0.000
0.511 −0.017 0.424 0.005 −0.169
−0.091 0.374 0.084 −0.022 0.042
0.002 −0.000 0.000 0.000 0.000

0.000 −0.002 −0.011 0.000
0.001 −0.058 0.126 −0.002
0.001 0.274 0.314 0.006
−0.003 −0.043 −0.458 0.007
0.000 −0.170 0.300 0.006
0.005 −0.000 −0.001 −0.000
0.001 0.316 0.039 0.001
0.001 −0.009 0.232 −0.000
−0.000 0.000 0.000 0.000



A2 =



0.279 −0.016 −0.020 −0.012 −0.020
−1.062 0.388 −0.104 0.009 −0.099
2.687 0.308 0.779 0.037 0.202
3.366 −0.737 −0.157 0.788 0.048
2.771 0.346 0.174 0.035 0.649
−0.004 0.002 0.001 −0.000 −0.000
0.511 −0.017 0.424 0.005 −0.169
−0.091 0.374 0.084 −0.022 0.042
0.002 −0.000 0.000 0.000 0.000

0.000 −0.002 −0.011 0.000
0.001 −0.058 0.126 −0.002
0.001 0.274 0.314 0.006
−0.003 −0.044 −0.459 0.007
0.000 −0.170 0.299 0.006
0.005 −0.000 −0.001 −0.000
0.001 0.316 0.039 0.001
0.001 −0.009 0.232 −0.000
−0.000 0.000 0.000 0.000



A3 =



0.279 −0.016 −0.020 −0.012 −0.020
−1.062 0.388 −0.104 0.009 −0.099
2.685 0.308 0.779 0.037 0.202
3.365 −0.738 −0.157 0.788 0.048
2.770 0.346 0.174 0.035 0.649
−0.004 0.002 0.001 −0.000 −0.000
0.511 −0.017 0.424 0.005 −0.169
−0.092 0.374 0.084 −0.022 0.042
0.002 −0.000 0.000 0.000 0.000

0.000 −0.002 −0.011 0.000
0.001 −0.058 0.126 −0.002
0.001 0.273 0.314 0.006
−0.003 −0.044 −0.459 0.007
0.000 −0.171 0.299 0.006
0.005 −0.000 −0.001 −0.000
0.001 0.316 0.039 0.001
0.001 −0.009 0.232 −0.000
−0.000 0.000 0.000 0.000



A4 =



0.279 −0.016 −0.020 −0.012 −0.020
−1.061 0.388 −0.104 0.009 −0.099
2.685 0.308 0.779 0.037 0.202
3.365 −0.738 −0.157 0.788 0.048
2.770 0.346 0.174 0.035 0.649
−0.004 0.002 0.001 −0.000 −0.000
0.510 −0.017 0.424 0.005 −0.169
−0.092 0.374 0.084 −0.022 0.042
0.002 −0.000 0.000 0.000 0.000

0.000 −0.002 −0.011 0.000
0.001 −0.058 0.126 −0.002
0.001 0.273 0.314 0.006
−0.003 −0.044 −0.459 0.007
0.000 −0.171 0.299 0.006
0.005 −0.000 −0.001 −0.000
0.001 0.316 0.039 0.001
0.001 −0.009 0.232 −0.000
−0.000 0.000 0.000 0.000



A5 =



0.279 −0.016 −0.020 −0.012 −0.020
−1.062 0.388 −0.104 0.009 −0.099
2.685 0.308 0.778 0.037 0.202
3.365 −0.738 −0.157 0.788 0.048
2.769 0.346 0.174 0.035 0.649
−0.004 0.002 0.001 −0.000 −0.000
0.510 −0.017 0.424 0.005 −0.169
−0.092 0.374 0.084 −0.022 0.042
0.002 −0.000 0.000 0.000 0.000

0.000 −0.002 −0.011 0.000
0.001 −0.058 0.126 −0.002
0.001 0.273 0.314 0.006
−0.003 −0.044 −0.459 0.007
0.000 −0.171 0.299 0.006
0.005 −0.000 −0.001 −0.000
0.001 0.316 0.039 0.001
0.001 −0.009 0.232 −0.000
−0.000 0.000 0.000 0.000



B1 =



60.789 −21.646 −5.153 −0.452
102.078 −6.032 −19.601 −0.044
−235.122 76.737 40.908 1.604
−273.130 148.481 17.368 5.632
−247.681 69.853 16.293 1.694

0.307 0.247 −0.218 30.393
−48.905 8.406 −14.104 0.350

2.124 −19.498 4.249 −0.392
−0.173 0.066 0.012 0.001



B2 =



60.756 −21.638 −5.150 −0.452
101.984 −6.016 −19.594 −0.044
−234.905 76.697 40.895 1.603
−272.954 148.450 17.358 5.631
−247.474 69.814 16.281 1.693

0.307 0.247 −0.217 30.393
−48.866 8.399 −14.106 0.350

2.134 −19.500 4.248 −0.392
−0.173 0.066 0.012 0.001





6

B3 =



60.743 −21.636 −5.148 −0.452
101.930 −6.009 −19.591 −0.044
−234.764 76.673 40.887 1.603
−272.846 148.434 17.352 5.631
−247.342 69.792 16.274 1.692

0.307 0.247 −0.218 30.393
−48.842 8.394 −14.107 0.350

2.141 −19.501 4.248 −0.392
−0.173 0.065 0.012 0.001



B4 =



60.741 −21.636 −5.148 −0.452
101.911 −6.011 −19.590 −0.044
−234.690 76.664 40.883 1.603
−272.793 148.431 17.349 5.631
−247.274 69.783 16.271 1.692

0.308 0.246 −0.218 30.393
−48.831 8.392 −14.108 0.350

2.144 −19.501 4.247 −0.392
−0.173 0.065 0.012 0.001



B5 =



60.747 −21.640 −5.148 −0.452
101.921 −6.021 −19.591 −0.045
−234.667 76.666 40.882 1.603
−272.782 148.438 17.348 5.632
−247.257 69.786 16.270 1.693

0.312 0.245 −0.218 30.393
−48.830 8.393 −14.107 0.350

2.144 −19.500 4.247 −0.392
−0.173 0.065 0.012 0.001



C1 =

[
−2.316 0.494 0.104 −0.037 −0.031
−2.667 −0.366 −0.155 −0.030 −0.059

0.001 0.028 0.291 −0.005
−0.001 −0.026 −0.261 −0.006

]
C2 =

[
−2.315 0.494 0.104 −0.037 −0.031
−2.665 −0.365 −0.155 −0.030 −0.058

0.001 0.028 0.291 −0.005
−0.001 −0.025 −0.261 −0.006

]
C3 =

[
−2.314 0.494 0.105 −0.037 −0.031
−2.664 −0.365 −0.155 −0.030 −0.058

0.001 0.029 0.291 −0.005
−0.001 −0.025 −0.261 −0.006

]
C4 =

[
−2.314 0.495 0.105 −0.037 −0.031
−2.664 −0.365 −0.155 −0.030 −0.058

0.001 0.029 0.291 −0.005
−0.001 −0.025 −0.260 −0.006

]
C =

[
−2.314 0.495 0.105 −0.037 −0.031
−2.663 −0.365 −0.155 −0.030 −0.058

0.001 0.029 0.291 −0.005
−0.001 −0.025 −0.260 −0.006

]

D1 =

[
188.114 −101.841 −11.985 −3.821
238.387 −65.998 −25.538 −1.457

]
D2 =

[
187.989 −101.820 −11.978 −3.821
238.175 −65.959 −25.525 −1.456

]

D3 =

[
187.912 −101.808 −11.974 −3.821
238.041 −65.937 −25.518 −1.456

]
D4 =

[
187.875 −101.806 −11.972 −3.821
237.973 −65.929 −25.514 −1.456

]
D5 =

[
187.867 −101.810 −11.971 −3.821
237.958 −65.933 −25.514 −1.457

]
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