

Atmel Micro-controller

and AVR ISA Platform Level
Verification

By Joseph F. Girotti

The Idea

• Inspiration: System Level Simplex
– Toolchain: AADL → Maude → VHDL

• ISA Level
– Platform matters

• Ariane 5 Flight 501
– 64 bit logical → 16 bit Physical

– Lowest level before Hardware

The Result

• Not as expected
– ISA level creates a POST synthesis

checker
– Still important: Allows checking of program

properties after library linking, and
assembly

• Likely source of Ariane 5 flight 501 bug

The Details

• Maude brief

• The Turing Machine Model

• ISA brief

• ISA Architecture

• ISA Implementation

• Bootloader Details

• The Inductive Theorem Prover (ITP)

Maude

• Declarative language (mathematical
axiomatization)

• Rewriting logic
– Equational logic is a subset of rewriting

logic
– Handles concurrent and deterministic

programs

The Turing Machine Model

• a piece of machinery that carries out
tasks by successively applying
sequences of instructions from a finite
set of instructions

• From: “Turing Machines”
– http://fsl.cs.uiuc.edu/index.php/Main_Page

http://fsl.cs.uiuc.edu/index.php/Main_Page

Stream a sequence of
instructions

mod STREAM is
sorts Bit Stream .
ops 0 1 : -> Bit .
op _:_ : Bit Stream -> Stream .
op zeros : -> Stream .

endm

Basic Turing Machine

mod TURING-MACHINE is including
STREAM.
sorts State Configuration .
op _`(_,_`) : State Stream Stream ->
Configuration .

var S : State . var L R : Stream .
eq S(zeros,R) = S(0 : zeros, R) .
eq S(L,zeros) = S(L, 0 : zeros) .

endm

Turing Successor

mod TURING-MACHINE-SUCC is including TURING-
MACHINE .

ops qs qh q1 q2 : -> State .

var L R : Stream . var B : Bit .

rl qs(L, 0 : R) => q1(0 : L, R) .

rl q1(L, 0 : R) => q2(L, 1 : R) .

rl q1(L, 1 : R) => q1(1 : L, R) .

rl q2(L, 0 : R) => qh(L, 0 : R) .

rl q2(B : L, 1 : R) => q2(L, B : 1 : R) .

endm

The AVR 8-Bit ISA

• RISC architecture with ~131
instructions dependent on
implementation
– 28 arithmetic and logic instructions,
– 36 branch instructions,
– 28 bit and bit-test instructions,
– 35 data transfer instructions,
– four MCU instructions.

The AVR 8-Bit Architecture

Creating the Module

fmod ATMEGA is

 protecting ATMEGASTATE .

 op run : ATmegaState -> ATmegaState .

 var A : ATmegaState . var F : Flash .

 var S : SRAM . var E : EEPROM .

 var PC : UInt8 . var N : Nat.

 vars Rd Rr V1 V2 V3 k : UInt8 .

endm

The Run Operation

• Each Instruction gets an equation
• ceq run(pccounter(PC) flash([PC, DEC
Rd] F) sram([Rd, V1] [63, V3] S)) =
run(pccounter(PC + 1) flash(F [PC,
DEC Rd]) sram([Rd, (V1 - 1)] [63,
setsr10(V3, (V1 - 1))] S))

 if (0 <= Rd and Rd <= 31) .

Opti-Bootloader

• Allows programming of the AVR via the
UART vice an ICSP programmer

• Implements the STK500v2 8bit protocol

• 512 Bytes

• Uses 37 instructions

How it works

• UART Interrupt vector resets micro-
controller

• Bootloader starts and checks UART
– If STK500v2 commands received process

them
– After a certain time with no STK500v2

commands start application

Simplification

• The watchdog timers job is to determine
if we are programming, or booting the
application. Therefore since we are
testing the programming we can
remove the watchdog timer
functionality, and it's configuration

Adding the UART

• Our initial model does not contain the UART.
Implement it as two byte arrays with position counters

– Uartic: the counter for input uart

– Uarti: byte array for input uart

– Uartoc: the counter for output uart

– Uarto: byte array for output uart

• ATMEGASTATE now looks like

ATMEGAState=(pccounter(pc)flash(fvals)
sram(svals)eeprom(eevals)uartic(val)
uarti(uivals) uartoc(val) uarto(uovals))

Maude ITP

• Maude has an Inductive Theorem Prover
– Similar to PVS

• Define a module for our check functions
– Fmod FRAME-RUN-REQUIREMENTS is
protecting ATMEGASTATE. endm

• Define a fuctional theory to prove
– Fth RUN-REQUIREMENTS is protecting
FRAME-RUN-REQUIREMENTS. endth

What to Check

• There are two primary things we need
to check
– Completion: The program always runs to

completion
– Correctness: The loaded program always

matches the sent program

Completion

• Find point in code that signals completion

• Make sure there is no legal rewrite rule

• We can then check that we always reach
run(ATMEGAState)=run(pccounter(INSTR_PC)
flash([PC, INSTR] fvals) sram(svals)
eeprom(eevals) uartic(val)
uarti(uivals) uartoc(val)
uarto(uovals))

Correctness

• Compare end program flash with UART
input code

ProgFlash(run(ATMEGAState)=
ProgUART(run(ATMEGAState)

Results

• Basic Instruction Tests

– ~500 rewrites @ 150,000 rewrites/second
– reduce in ATMEGA : run (pccounter ([0,0]) flash(F

[0,0,SBC 1 2]) sram(((S [0,63, 1]) [0,2,1]) [0,1,10])) .

– rewrites: 613 in 4ms cpu (0ms real) (153250
rewrites/second)

– result [ATmegaState]: run(flash(F [0,0,SBC 1 2]) sram(S
[0,1,10] [0,2,1] [0,63,0]) pccounter([0,1]))

• Completion & Correctness

– Forthcoming

Future Work

• Add more instructions

• Implement Watchdog Timer
functionality

• Implement other asynchronous
behavior

• Port to Real Time Maude for Worst
Case Execution time verification

