## Reachability Analysis of Closed-Loop Switching Power Converters

#### Shamina Hossain

University of Illinois, Urbana-Champaign

December 16, 2012

University of Illinois, Urbana-Champaign

Shamina Hossain

#### Table of Contents

#### Background

Modeling

Analysis

University of Illinois, Urbana-Champaign

Shamina Hossain

### Switching Power Converters

- 1. DC-DC Converters
  - Buck converter
  - Boost converter
  - Buck-Boost converter
- 2. Rectifiers (AC-DC)
- 3. Inverters (DC-AC)
- 4. Transformers

University of Illinois, Urbana-Champaign

Shamina Hossain

## Buck Converter

Circuit Diagram

Shamina Hossain



University of Illinois, Urbana-Champaign

## Design Verification of Switching Power Converters

- 1. Traditional simulation methods
  - Simulink/Stateflow
  - PSpice
  - Monte Carlo
- 2. Hybrid system verification tools
  - SpaceEx

University of Illinois, Urbana-Champaign

Shamina Hossain

## SpaceEx

#### Software Architecture



Shamina Hossain

University of Illinois, Urbana-Champaign

\_ →

## SpaceEx Reachability Algorithm

- Symbolic States
- Control:
  - 1. Maximum iterations
  - 2. Relative and absolute error

University of Illinois, Urbana-Champaign

Reachability Analysis of Closed-Loop Switching Power Converters

Shamina Hossain

## SpaceEx Interface

#### Setting Maximum Iterations and Relative and Absolute Errors

| Model Specifica       | tion Options Output Advanced |   |
|-----------------------|------------------------------|---|
| Scenario              | LGG Support Function         | ? |
| Directions            | 🛇 box 💿 oct 🔘 uni            | 2 |
| Clustering percentage | 100                          | 2 |
| Aggregate sets        | Convex hull                  | 3 |
| Sampling time         | 0.00001                      | 2 |
| Flowpipe tolerance    | 0.001                        | 2 |
| Initial samples       | 50                           | 3 |
| Local time horizon    | 1                            | 3 |
| Max. iterations       | 15                           | 2 |

| Model         | Specifica | tion                 | Options                               | Output                                 | Advanced                               |       |
|---------------|-----------|----------------------|---------------------------------------|----------------------------------------|----------------------------------------|-------|
| Relative erro | or        | 1.0e                 | e-12                                  |                                        |                                        | 0     |
| Absolute en   | ror       | 1.0e                 | e-15                                  |                                        |                                        | 0     |
| ODE toleran   | ce rel.   |                      |                                       |                                        |                                        |       |
| ODE toleran   | ce abs.   |                      |                                       |                                        |                                        |       |
| Additional o  | ptions    |                      |                                       |                                        |                                        | 0     |
|               |           |                      |                                       |                                        |                                        | 1     |
|               |           |                      |                                       |                                        |                                        |       |
| SpaceEx Ve    | rsion     | Spac<br>v0.9<br>13:1 | eEx State<br>.7beta, co<br>6:57, 64-b | Space Ex<br>mpiled No<br>oit float, 64 | plorer,<br>v 26 2012,<br>4-bit precise | float |
| Interface V   | ersion    | Spac<br>v1.0         | eEx Web<br>-BETA1.4                   | Interface<br>// 2011-1                 | )-24                                   |       |
| 3D Display li | brary     | www                  | v.javaview                            | .de                                    |                                        |       |

P.

University of Illinois, Urbana-Champaign

Reachability Analysis of Closed-Loop Switching Power Converters

Shamina Hossain

## SpaceEx Interface

#### Initial States and Output Specification

| Mode                     | Specification                      | Options                      | Output                     | Advanced               |    |
|--------------------------|------------------------------------|------------------------------|----------------------------|------------------------|----|
| System                   | buck                               | ▼ Upd                        | ate                        |                        | 0  |
| • buck                   |                                    |                              |                            |                        |    |
| Contro                   | olled : il, vc, t, gt              |                              |                            |                        |    |
| Const                    | ant-Dynamics : vs, v               | rref, delta, tma             | ix.                        |                        |    |
| - Basero                 | components : buck_                 | template_1                   |                            |                        |    |
| Initial state            | s                                  |                              |                            |                        | 3  |
| loc(buck_t<br>== 0 & vs= | emplate_1)==ch<br>=12 & tmax ==0.0 | arging & il :<br>001 & vref= | == 0 & vc =<br>=5 & delta: | =0 & t == 0 8<br>==0.1 | gt |
|                          |                                    |                              |                            |                        | 1  |
| Forbidden s              | states                             |                              |                            |                        | /  |

| Model Specification Op       | ions Output Advanced |
|------------------------------|----------------------|
| Output format 2D (ge         | ) 🔽 🚷                |
| Output variables i1, vo      | gt 🦉                 |
| Output error                 | 0                    |
| Generate PDF file            |                      |
| Echo the generated command l | nes to the console 📃 |
| Verbosity Debug              | 4 💌 🔞                |

University of Illinois, Urbana-Champaign

Shamina Hossain

#### Table of Contents

#### Background

#### Modeling

Analysis

<ロ> <四> <四> <豆> <日> <日> <日> <日> <日</p>

University of Illinois, Urbana-Champaign

Shamina Hossain

#### Model of Open-Loop Configuration

$$x = \begin{bmatrix} i_L \\ V_c \end{bmatrix}$$
$$A_o = A_c = \begin{bmatrix} 0 & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{RC} \end{bmatrix}$$
$$B_c = \begin{bmatrix} 1/L \\ 0 \end{bmatrix} V_s \text{ or } B_o = \begin{bmatrix} 0 \\ 0 \end{bmatrix} V_s$$

Shamina Hossain

Reachability Analysis of Closed-Loop Switching Power Converters

**Block Diagram** 



Shamina Hossain

Reachability Analysis of Closed-Loop Switching Power Converters

System Model

$$A_{ctrl} = \begin{bmatrix} -\frac{1}{p_1} & 0 & 0 \\ -\frac{p_2}{p_1 p_3} + \frac{1}{p_3} & -\frac{1}{p_3} & 0 \\ -\frac{p_2 p_4}{p_1 p_3 p_5} + \frac{p_4}{p_3 p_5} & \frac{-p_4}{p_3 p_5} + \frac{1}{p_5} & 0 \end{bmatrix}$$
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad B_{ctrl} = \begin{bmatrix} \frac{1}{p_1} \\ \frac{p_2}{p_1 p_3} \\ \frac{p_4 p_2}{p_1 p_3 p_5} \end{bmatrix}$$

Shamina Hossain

Reachability Analysis of Closed-Loop Switching Power Converters

Composed System

$$\dot{x} = A_c \cdot x_c + B_{comp} \left( V_{ref} - V_{out} \right)$$

University of Illinois, Urbana-Champaign

A.

Shamina Hossain

Composed System



Shamina Hossain

University of Illinois, Urbana-Champaign

#### Table of Contents

#### Background

Modeling

#### Analysis

University of Illinois, Urbana-Champaign

Shamina Hossain

#### Hysteresis Controller

Hybrid Model of Buck Converter and Hysteresis Controller



Shamina Hossain

University of Illinois, Urbana-Champaign

#### Results of Hysteresis Controller

Capacitor Voltage vs. Global Time



Shamina Hossain

University of Illinois, Urbana-Champaign

#### Results of Hysteresis Controller

Inductor Current vs. Global Time



Shamina Hossain

University of Illinois, Urbana-Champaign

## Simulink Results for Composed System

Simulink Model



Shamina Hossain

Reachability Analysis of Closed-Loop Switching Power Converters

# Simulink Results for Composed System



Shamina Hossain

University of Illinois, Urbana-Champaign

## Simulink Results for Composed System

#### Capacitor Voltage vs. Global Time



▲口 > ▲圖 > ▲目 > ▲目 > ▲目 > ● ● ●

University of Illinois, Urbana-Champaign

Shamina Hossain

### Conclusion and Future Work

- Open-loop and hysteresis controller configurations
- Modeling flexibility
- Overapproximation issues

University of Illinois, Urbana-Champaign

Reachability Analysis of Closed-Loop Switching Power Converters

Shamina Hossain

#### References

## [1] [2] [3]

ECEN5807.

Matlab/simulink materials, November 2012.

- G. Frehse. An introduction to spaceex. v0.8, December 2010.
- T. T. Johnson, Z. Hong, and A. Kapoor.
  Design verification methods for switching power converters.
  In *Power and Energy Conference at Illinois (PECI), 2012 IEEE*, pages 1–6, Feb. 2012.

Shamina Hossain

Shamina Hossain

#### ► Questions?

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → のへの

University of Illinois, Urbana-Champaign