Bounded Verification of nondeterministic non-linear hybrid systems from Simulink/Stateflow Simulation

Zhenqi Huang ECE 584 final project

MATLAB Simulink/Stateflow

Simulation vs Verification

	Simulation	Verification
Sound	No	Yes
Coverage	One instance	All possible cases
Usability	Deterministic	Deterministic/Nondeterministic
Scalability	Good	Not as good
Cost	Low	High

Simulation-based verification?

Simulation → Verification

- Get a deterministic, inaccurate, and discrete simulation trace. $\beta = (v_0, t_0), (v_1, t_1), \dots, (v_l, t_l)$
- Compute the accumulated error associated with each sample point.
 - Truncate error, approximation error, non-determinism...
- Bound the reach set between consecutive sample points.

Problem Formulation and Limitations

• System modeled as an Nondeterministic Hybrid Automaton $A = \langle V, L, Q, q_0, D, T \rangle$

- $t \in V$, $\dot{t} = 1$ in whatever locations.
- $loc \in L$ is associated with an Inv
- Initial state is a single state.
- Transition is specified with Grd and Res, guard and reset. $D = D_T \cup D_Q$, time-triggered and state-triggered transitions. For state-triggered transitions, Res = id identity mapping
- A trajectory $\tau \in T$ follows a differential inclusion $\dot{\tau}.X \in F_{\tau,loc}(\tau,X)$, where $F_{loc}: \mathfrak{R}^n \to P(\mathfrak{R}^n)$.

Additional Assumptions

Bounded stepwise numerical error.

- $\beta = (v_0, t_0), (v_1, t_1), \dots, (v_l, t_l)$. An execution fragment α starts at v_k , implies $|\alpha (t_{k+1} t_k) v_{k+1}| \le e$.
- Sounded non-determinism.
 - $\forall loc, \forall x$, the diameter $D(F_{loc}(x)) \leq d$.
- Lipchitz dynamics.
 - $\exists L, \forall loc, \forall x, y, |F_{loc}(x) F_{loc}(y)| \le L|x y|$
- Bounded difference in dynamics between loc

• $M = \sup_{x \in Inv(i) \cap Inv(j)} |F_i(x) - F_j(x)|$

Minimum dwell time exists

Instantiation

- $f_{loc}: \mathfrak{R}^n \to \mathfrak{R}^n$ is an instance of F_{loc} if $\forall x, f_{loc}(x) \in F_{loc}(x)$
- An deterministic hybrid automaton $A' = < V, L, Q, q_0, D, T' >$ is an instance of a nondeterministic hybrid automaton $A = < V, L, Q, q_0, D, T >$ if
 - A trajectory $\tau \in T'$ follows a differential equation $\dot{\tau}.X = f_{\tau.loc}(\tau.X)$, where f_{loc} is an instance of F_{loc} .
- Simulation engines can handle A'

So far we introduced the motivation and formulation of the problem, in addition with a set of assumptions on the model

 Next we will discuss the approach to compute the reach set of a nondeterministic hybrid system A given a simulation trace β of its instance A'.

Stepwise Error

- From the assumptions, we can control the stepwise error.
- Encode the numerical error and non-determinism as stepwise error $c_k = e + d(t_{k+1} t_k)$.
- All possible execution fragments start at v_k should be within distance c_k from v_k after a period $t_{k+1} - t_k$

Accumulated Error

• Denote $\varepsilon_k = \sup_{\alpha} |\alpha(t_k) - v_k|$ be the accumulated error between all admissible execution α and sample point v_k

Accumulated Error

If no transition takes place in [t_k, t_{k+1}], ε_{k+1} = ε_ke^{L (t_{k+1}-t_k)} + c_k.
∀loc, ∀x, y, |F_{loc}(x) - F_{loc}(y)| ≤ L|x - y|.
If one transition takes place in [t_k, t_{k+1}] ε_{k+1} = ε_ke^{L (t_{k+1}-t_k)} + ^M/_L (e^{L(t_{k+1}-t_k)} - 1) + c_k
Where, M = sup_{x ∈ Inv(i) ∩ Inv(j)} |F_i(x) - F_j(x)|

 Proofs in [Computing Bounded Reachset from Sampled Simulation Trace] in proceedings of HSCC 2012'

Propagation between sample points

• Fixed point computation.

1
$$\sigma \leftarrow \epsilon_k$$
;
2 do
3 $\sigma \leftarrow b\sigma \quad \backslash b > 1$ is a constant;
4 $B \leftarrow Ball(\mathbf{v}_k.X, \sigma);$
5 $m \leftarrow \sup_{X \in B} ||f(X)||;$
6 while $\sigma - m\delta < \epsilon_k$;

Case Study I: Room Heating

- There are 3 rooms heated by 2 heater.
- Heaters can move from one room to another.
- The continuous variables (x_1, x_2, x_3) capture the temperature of the three rooms.
- The discrete transitions capture how heaters move. A heater moves from room *i* to room *j* if
 - If room i has a heater and room j does not,
 - $x_i x_j > 1$, and
 - $x_j \leq 18$
- The safety property of interest is that the temperature of all rooms stay above a threshold, say 17C.

Case Study I: Room Heating

Case Study II: delayed flocking

• Two robots move on a line . One leader one follower.

- The leader moves with acceleration in [-0.2, 0.2]. The follower tries to maintain the separation to be 10.
- Every 0.2s, the leader send a message containing its current position and velocity to the follower.
- The message get delayed by $d \in [0.05, 0.1]$.
- The follower updates its controller once a msg arrives.
- We want to check whether the two robots collide, say $x_1 x_2 \le 5$.

Case Study II: delayed flocking

We encode the problem as the following hybrid automaton

• Variable includes $x_1, v_1, x_2, v_2, t, msg1, msg2$

 $[t = 0.2]{t \coloneqq 0, msg2 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}}$ $[t = 0.05]{}$ $\dot{x_1} = v_1$ $\dot{x_1} = v_1$ $\dot{v}_1 \in [-0.2, 0.2]$ $\dot{v}_1 \in [-0.2, 0.2]$ $\dot{x_2} = v_2$ $\dot{x_2} = v_2$ $v_2 \in \{f(msg1, x_2, v_2),$ $\dot{v}_2 = f(msg1, x_2, v_2)$ $f(msg2, x_2, v_2)$

 $[t = 0.1]\{msg1 \coloneqq msg2\}$

Case Study II: delayed flocking

Conclusion

 A approach to verify safety given simulation trace and model specification

 Handles nondeterministic nonlinear hybrid systems

I am glad to answer any of your questions.