
Verification of SATS Landing Protocol:
a Case Study

Dileep Kini

University of Illinois, Urbana Champaign

1 Introduction

The Small Aircraft Transportation System(SATS) was introduced by NASA[1]
in order to manage increased throughput at small airports. Small airports usu-
ally have limited or no access to facilities like control towers and radar to help
aircrafts land. SATS provides for a protocol which requires minimal assistance
from the airport. The aircrafts involved get only landing sequence information
from the airport. They cooridnate with other aircrafts to acquire rest of the
information required to land.

The most obvious concern with any such protocol is safety of the participat-
ing aircrafts. In this scenario it is defined as maintaining a minimal separation
between the aircrafts involved. The aim of this project is to formally model a
simplified version of this system and verify it’s correctness using the tools PVS
and UPPAAL.

There have been previous attempts[2] [3] to tackle the verication of SATS
protocol. This work is intended to be combinination of techniques and rediscov-
ering proofs for a case study as part of a course project.

2 The SATS framework

2.1 Overview

The SATS framework describes a set of rules that need to be followed by the
participanting aircrafts which are sufficient to ensure separation and safe land-
ing. There are two components of the SATS model: (a) The Self Controlled Area
(SCA) (b) The Airport Management Module (AMM). The aircrafts involved are
assumed to be capable of communicating with other aircrafts in the SCA.

The framework that we consider here is simpler than the orignial one in-
troduced by NASA. The original framework allowed for lateral entries into the
SCA, where as we dont. This does not affect the continuous part of the aircraft
in any way.

The Self Controlled Area consists of pre decided locations and areas which
the aircrafts need to be in. To begin with all aircrafts are assumed to be flying
outside the SCA. The aircraft is allowed to enter only at the holding locations
at 3000 feet. An aircraft wishing to land requests the AMM for entry. When it
is granted entry it is assigned a sequence number and missed approach side. The
aircraft then depending upon location/sequence of other aircrafts in the SCA
follows through the lower holding location, base segment, final segment and fi-
nally the runway. If for some reason an aircraft in the landing segments is unable
to make the landing it goes to the missed approach segment assigned to it in the
beginning. It subsequently enters one of the holding location at which point it
is put at the end of the sequence.

The Airport Management Module should be in place at the airport, it should
be capable of communicating with aircrafts in the SCA and those in the vicinity
wanting to enter it. The AMM responsibility is limited to maintaining and as-
signing sequence numbers. The AMM is kept simple because it is assumed that
SATS is catering to airports have limited facilities.

2.2 Formal Model

Each aircraft(identified by i) in the system is modeled as a hybrid automata with
the states having the following components . The number i is the unique identi-
fier of the aircraft (not it’s sequence number). The aircraft’s location is identified
by the variable loci which varies over L (described in the next section). Its phys-
ical distance along the approach segment is measured with a continuous variable
xi. The variable mi maintains the aircraft’s missed apporach side and seqi keeps
it’s landing sequence number. A discrete global variable c is maintained at the
AMM which represents the highest sequence number held by any aircraft in the
SCA, its default value is 0

The type of the variables is summarized in the following table

Variable (i ∈ N) Type

xi R≥0

seqi N>0

mi {l, r}
loci L

c N

The hybrid automaton for the ith aircraft is given byAi = (Xi, Qi, Θi, Ei,Di, Ti)
where

Xi = {xi, seqi,mi, loci}
Qi = val(Xi)

Θi = (seqi = 0 ∧ loci = fly)

Ti = {t ∈ trajs(xi) | ˙t(xi) = 1}

In the following sections we describe the locations and the discrete transitions
associated with this hybrid automata. Each discrete transition is considered to
be an external action and hence we do not make any special mention of them.

Locations (L)

– fly: this is the single state in which every aircraft is assumed to be in before
entering the SCA.

– h3r/h3l: these are the initial holding locations on either side of the runway.
They are located 3000 feet above ground level. Aircrafts hold in this location
before descending.

– h2r/h2l: like above these are the holding locations on either side which but
are 2000 feet above ground. These are the last holding location before be-
ginning the approach to the runway.

– br/bl: These are the inital segments of the approach to the runway. Starting
from these states the value of the variable xi becomes significant. xi repre-
sents the distance along the approach and missed segment (if the aircraft
misses the approach).

– fin: final segment is the end of the approach. It starts where the two base
segments intersect at the T and goes along to the runway. The value. As
stated above the value xi is continued to be measured along this segment

– run: If the approach is successful it enters the this final state.

– mr/ml: These states represent the missed approach segment on either side
of the runway. When the approach to runway is unsuccessfull the aircraft
moves to here instead of run.

Actions and their Transitions

– fly-h3(d=r/l)(e=r/l): allows aircraft to move from fly to a holding location
at 3000 feet

- Guard: (i) no other aircraft occupies the location h3d it is going to enter
(ii) there are less than 2 aircrafts in the SCA which are assigned e as
their missed approach side

- Update: mi := e, c := c+ 1, seqi := c
– h3-h2(d=r/l): allows aircraft to move from the higher to lower holding zone

on the same side
- Guard: h2d is not occupied

– h2-b(d=r/l): move from holding and begin approach along base segment of
the same side

- Guard: xp(i) ≥ 4, where p(i) is the aircraft with one lower sequence
number

- Update: xi := 0
– b-fin(d=r/l): after covering length of base segment start the finish segment

- Guard: xi = l(base)
– fin-run: after covering length of finish segment land on runway

- Guard: xi = l(base) + l(fin)
– fin-m(d=r/l): if approach to runway unsuccessful move to md after covering

length of the finish segment
- Guard: xi = l(base) + l(fin) ∧mi = d

– m-h2(d=r/l): after covering length of the missed approach zone enter holding
zone at 2000 feet if both holding zones on that side are unoccuppied, and
assume the last position in the sequence

- Guard: xi = l(base) + l(fin) + l(miss) and h2,h3 at d are unoccupied
- Update: (∀j ∈ SCA seqj := seqj − 1), seqi = c

– m-h3(d=r/l): similar to above except it is sufficient for h3 at d to be free

3 Verification of SATS

The SATS system that we consider can have an arbitrarily large number of air-
crafts. This makes the state space infinite and hard to verify the safety of any
non-trivial property. The approach followed here is the same as in [Ref]. We
prove that inspite of unbounded number of aircrafts in the system there can be
atomst four aircrafts in the SCA. This is a property purely of the discrete tran-
sition system and is independent of the dynamics of it’s continuous variables.
Hence we use PVS to model it’s discrete part (obtained by dropping the xis) and
mechanically prove this fact. The PVS specification is provided in the appendix.
This specification is built on top of the simplemachine template.

To prove that there are atmost 4 aircrafts in the SCA we prove something
slightly stronger: At any point there are atomst 2 aircrafts in the SCA which are
assigned the same side for missed approach for either side. This property holds
because when an aicraft gains entry into the SCA it is ensured that there are

fewer than 2 aircrafts assigned to the particular missed approach side.

Now we claim that the same property will hold for the transition system
extended with continuous variables. To prove this it is sufficient to provide a
forward simulation from the hybrid automaton to it’s discrete counterpart

Once the four aircraft property is established we model check the desired
safety property against a system consisting of 4 aircrafts. In this case study we
assume that the speed of all aircrafts through the various segments is constant
(= 1). This allows us to model it as a timed automata. We use UPPAAL to
model our system as parallel composition of 4 aircrafts. UPPAAL allows for
model checking TCTL properties.

For properties that are universally quantified over two aicrafts we need only
consider two of them, because the only thing different between the aircrafts is
their id to which the protocol is oblivious. We model check the system against the
following properties by encoding them in TCTL. UPPAAL allows for a restricted
form of TCTL in which temporal properties are not allowed to be nested. The
safety properties which we are interested in can be easily encoded in it.

– Any two aircrafts in the segments approaching the runway are always sepa-
rated by a distance of 4 units.

∀�((onApp0 ∧ onApp1)→ (4 ≤ |x0 − x1|))

where onAppi is a macro which is true iff the aircraft i is on the approach.
So the formula can be read as : For all paths from the starting state it is
always true that if aircraft 0 and aircraft 1 are on the approach then the
distance between them is atleast 4.

– The above property states that two aircrafts on the approach should be
separated but it does not say anything about their order. What we also
want is the following: For two aircrafts in the segments approaching the
runway , the one with lower sequence number is always ahead of the other.

∀�((seq0 = 1) ∧ (seq1 = 2) ∧ onApp0 ∧ onApp1 → (x0 > x1))

This formula can be read as : for all paths from the starting states if aircraft
A0 has sequence 1 and aircraft A1 has sequence 2, then A0 is ahead of A1.

4 Conclusion

In this case study we have tried to understand the working of the Air traffic
control protocol called SATS. We showed the correctness of the landing pro-
tocol under assumptions of timed dynamics of the speeds of the aircraft. The
correctness that we were interested in pertains to separation of the aircrafts
and maintaing sequence. We were interested in proving these properties for ar-
bitrarily large number of aircrafts in the system and hence followed a two-fold

approach. We first used a theorem proving tool PVS to mechanically prove that
we need to consider a restriced state space. And then we used a model checking
tool UPPAAL to prove the required properties of the continuous variables on
the restricted state space.

References

1. G. Dowek, C. a. Muoz, and V. Carreo, “Abstract model of the sats concept of
operations : Initial results and recommendations,” NASA Techinal Report - 2004.

2. T. T. Johnson and S. Mitra, “Parametrized verification of distributed cyber-physical
systems: An aircraft landing protocol case study,” ICCPS, pp. 161–170, Apr. 2012.

3. C. a. Muoz, G. Dowek, and V. Carreo, “Modeling and verification of an air traf-
fic concept of operations,” Proceedings of the 2004 ACM SIGSOFT international
symposium on Software testing and analysis - ISSTA ’04, pp. 175–175, 2004.

Appendix

.1 A PVS theory for SATS

SATS: THEORY BEGIN

Id : TYPE = nat

Zone : TYPE = upto(10) % Locations are numbered from 0 to 10

side: TYPE = { r , l }

Q : TYPE = [# loc:[Id -> Zone], m:[Id -> side] #]

IMPORTING finite_sets[Id]

non_fly(q:Q) : setof[Id] = { id:Id | loc(q)(id) /= 0 }

states: TYPE = { q:Q | is_finite(non_fly(q)) }

loc(i:Id, s:states): Zone = loc(s)(i)

m(i:Id, s:states): side = m(s)(i)

% Start State, all aircrafts are in flying zone

start(s: states) : bool = (FORALL (i:Id) : loc(i,s) = 0)

% Actions

actions: DATATYPE BEGIN

fly_h3(i:Id, d:side, e:side): fly_h3?

h3_h2(i:Id, d:side): h3_h2?

h2_b(i:Id, d:side): h2_b?

b_fin(i:Id, d:side): b_fin?

fin_m(i:Id, d:side): fin_m?

fin_run(i:Id): fin_run?

m_h3(i:Id, d:side): m_h3?

m_h2(i:Id, d:side): m_h2?

END actions

% Auxiliary functions for defining guards

occupied(z:Zone, s:states): bool = EXISTS (i:Id) : loc(i,s) = z % is a zone occupied

free(e:side, s:states): bool =

FORALL (i:Id), (j:Id) : ((loc(i,s) /= 0) and (loc(i,s) /= 10) and

(loc(j,s) /= 0) and (loc(j,s) /= 10) and (i /= j))

implies ((m(i,s) /= e) or (m(j,s) /= e))

% Guards

enabled(a:actions, s:states):bool =

CASES a OF

fly_h3(i,d,e): (loc(i, s) = 0) and (d=r implies (not occupied(1, s))) and

(d=l implies (not occupied(2, s))) and free(e,s),

h3_h2(i,d) : (d=r implies (loc(i, s) = 1 and not occupied(3, s))) and

(d=l implies (loc(i, s) = 2 and not occupied(4, s))),

h2_b(i,d) : (d=r implies (loc(i, s) = 3)) and

(d=l implies (loc(i, s) = 4)),

b_fin(i,d) : (d=r implies (loc(i, s) = 5)) and

(d=l implies (loc(i, s) = 6)),

fin_m(i,d) : (loc(i, s) = 9) and (d = m(i,s)),

fin_run(i) : (loc(i, s) = 9),

m_h3(i,d) : (d=r implies (loc(i, s) = 7 and not occupied(1, s))) and

(d=l implies (loc(i, s) = 8 and not occupied(2, s))),

m_h2(i,d) : (d=r implies (loc(i, s) = 7 and not (occupied(1, s)

or occupied(3, s)))) and (d=l implies (loc(i, s) = 8

and not (occupied(2, s) or occupied(4, s))))

ENDCASES

% Transitions

trans(a:actions, s:states):states =

CASES a OF

fly_h3(i,d,e): s WITH [loc := loc(s) WITH[(i) := (if d=r then 1 else 2 endif)],

m := m(s) WITH[(i) := e]],

h3_h2(i,d) : s WITH [loc := loc(s) WITH[(i) := (if d=r then 3 else 4 endif)]],

h2_b(i,d) : s WITH [loc := loc(s) WITH[(i) := (if d=r then 5 else 6 endif)]],

b_fin(i,d) : s WITH [loc := loc(s) WITH[(i) := 9]],

fin_m(i,d) : s WITH [loc := loc(s) WITH[(i) := (if d=r then 7 else 8 endif)]],

fin_run(i) : s WITH [loc := loc(s) WITH[(i) := 10]],

m_h3(i,d) : s WITH [loc := loc(s) WITH[(i) := (if d=r then 1 else 2 endif)]],

m_h2(i,d) : s WITH [loc := loc(s) WITH[(i) := (if d=r then 3 else 4 endif)]]

ENDCASES

IMPORTING simplemachine[states, actions, enabled, trans, start]

inSCA(i:Id, s:states): bool = (loc(i,s) /= 0) and (loc(i,s) /= 10)

% Atmost 2 aircrafts in zones other than fly and run which are assigned to a particular side

atmost2(s:states) : bool = Forall (i,j,k:Id): (inSCA(i,s) and inSCA(j,s) and inSCA(k,s) and

(m(i,s) = m(j,s)) and (m(j,s) = m(k,s)))

implies

((i=j) or (j=k) or (i=k))

m_inv : LEMMA FORALL (i:Id, s:states, a:actions):

loc(i,s)/=0 and enabled(a,s) implies m(i, trans(a,s)) = m(i,s)

atmost2_inv : LEMMA FORALL (s:states, a:actions):

reachable(s) and enabled(a,s) and atmost2(s) implies atmost2(trans(a,s))

END SATS

