Decidable Reachability for Initialized Almost Rectangular Hybrid Automata

Nima Roohi
University of Illinois Urbana Champaign

Outline

- Define (Initialized) Almost Rectangular Hybrid Automata
- Problem 1
- Solution (two transformations)
- What Transformations We Use
- Problem 2
- Partitioning
- Finite
- Decidable

Almost Rectangular HA

- Locations
- Variables
- Invariants
- Flows
- Init. Locations
- Init. Values
- Edges
- Labels
- Guards
- Resets
 (different flows enforces strong reset)

What is New in the Problem?

- Existence of a valid flow for x is not depend on the value of x
- Upper flow is never smaller than lower flow
- Upper bound curve is never smaller than the lower bound curve

Split the Location Invariants

－Number of locations will be increased by $2^{\mid \text {Vars } \mid}$
－Two automata are bi－similar
－There was no transition

－Edges are dúplicated

Problem is NOT Solved

- We just guaranteed x_{c}^{-}and x_{c}^{+}cannot be in one invariant
- But one of them is enough for the problem

Restrict Invariants

- Add one new variable (z) to each Hybrid Automaton
- Add $z=0$ to the invariant of all such locations
- Two automata are bi-similar
- Non-deternanictic initial location selection
- Non-determi

Restrict Invariants II

- Now we can assume after any positive amount of time, reachable points are defined by lower and upper bound curves.
- All points in the middle are reachable
- No point outside is reachable

Transformations

- Split Locations
- Restrict Invariants
- Replace each variable x by two variables l_{x} and u_{x}
- Flows will be in the form of $\dot{x}=a x+b$
- Clock Transformation
- x_{0} is known and is only one value
- $\dot{x}=a x+b$
- $x=x_{0} e^{a t}+\frac{b e^{a t}-b}{a}$
- Clock transformation replace x by t_{x}
- Constants will be changed accordingly
- Constant will be in $\mathbb{Q} \cup \mathbb{Q} \ln \mathbb{Q}^{+}$
- Transform Initialized Singular automata to Initialized Stopwatch automata
- Transform Initialized Stopwatch automata to Timed automata
- Constants will be in $\mathbb{Q} \cup \mathbb{Q} \ln \mathbb{Q}^{+}$

What is New in the Problem?

- More Complex Regions
- Exponentially more Regions

Rational Timed Alatosta\&łational Timed Automaton

Partitioning

- Directly Considering Rational Constants Instead of Integers
- Only Considering Used Constants Instead of All Possible Constants

- Finite Number of Partitions (same order)

Equivalent Classes are Bisimilar

- Any t satisfy diagonal conditions
- We can assume $t_{1}>0$
- Otherwise $t_{2}=0$ is the obvious answer
- We can assume between $\left[\mathrm{v}_{1}\right] \neq\left[\mathrm{v}_{1}+\mathrm{t}\right]$ there is no other class
- Induction Hypothesis
- Suppose $\mathrm{z}_{1} \leq \mathrm{c}_{\mathrm{z}}$ and $\mathrm{z}_{1}+\mathrm{t}_{1} \geq \mathrm{c}_{\mathrm{z}}$
- Such z must exist
- $\mathrm{z}_{1}<c_{z} \Rightarrow \mathrm{t}_{2}=c_{z}-\mathrm{z}_{2}$
- $\mathrm{z}_{1}=\mathrm{c}_{\mathrm{z}} \Rightarrow \mathrm{t}_{2}=0^{+}$
- $t_{2}>0$

Regions are Computable

- All constants are in $\mathbb{Q} \cup \mathbb{Q} \ln \mathbb{Q}^{+}$
- Closed under addition
- Closed under multiplication by a rational number
- We can sort all horizontal and vertical lines (?)
- We can also sort all diagonal lines (?)
- If we can find empty regions then we can enumerate all regions (?)
- We also need to find whether
- a region and invariant of a location intersect (?)
- an edge connects two regions (?)
- A time transition connects two regions (?)
- Regions and constraints are convex

Regions are Computable II

－All these problems can be reduced to a more general decidability problem

$$
\mathrm{I}=\bigwedge_{i \in m}\left(\left(\sum_{j \in n} a_{i, j} x_{j}\right) \sim_{i} r_{i}+\ln v_{i}\right)
$$

－$m, n \in \mathbb{N}^{+}$
－$a_{i, j}, r i \in \mathbb{Q}$
－$v_{i} \in \mathbb{Q}^{+}$
－$\sim_{i} \in\{<, \leq\}$
－Variable Elimination Method like Fourier－Motzkin

The Fourier-Motzkin Method

- Divide I into three sub-system of inequalities

$$
\mathrm{I}_{-} \quad \mathrm{I}_{+} \quad \mathrm{I}_{0}
$$

- For every pair of inequalities in I_{-}and I_{+}like
- $2 x-y<3-3 x-5 y \leq 4$
- Define $3(2 x-y)+2(-3 x-5 y)<3 \times 3+2 \times 4$ or

$$
-13 y<17
$$

- Do the same until no variable remains!
- Therefore decidability of I is reduced to

$$
\bigwedge_{i \in m^{\prime}}\left(0 \sim_{i} r_{i}+\ln v_{i}\right)
$$

Decidability of $r \sim \ln v$

- $r \sim \ln v$ is true if and only if $e^{r} \sim v$
- We know $e^{r} \notin \mathbb{Q}(r \neq 0)$
- Therefore $e^{r} \sim v$ if and only if $e^{r}<v$
- We can find rational lower $\left(l_{i}\right)$ and upper $\left(u_{i}\right)$ bounds of e^{r} that are equal to it up to at least first i number of digits
- If $v \leq l_{i}$ then $e^{r}<v$ is false
- If $v \geq u_{i}$ then $e^{r}<v$ is true
- i must exists, otherwise
- $l_{\infty} \leq e^{r} \leq u_{\infty}$ and $l_{\infty}=u_{\infty}$ which implies $e^{r} \in \mathbb{Q}$
THAATY YOU
[17)

