Decidable Reachability for Initialized *Almost* Rectangular Hybrid Automata

Nima Roohi

University of Illinois Urbana Champaign

Outline

- Define (Initialized) Almost Rectangular Hybrid Automata
- Problem 1
 - Solution (two transformations)
- What Transformations We Use
- Problem 2
 - Partitioning
 - Finite
 - Decidable

Almost Rectangular HA

- Locations
- Variables
- Invariants
- Flows
- Init. Locations
- Init. Values
- Edges
 - Labels
 - Guards
 - Resets

Initialization is Defined as Before (different flows enforces strong reset)

What is New in the Problem?

- Existence of a valid flow for x is not depend on the value of x
- Upper flow is never smaller than lower flow
 - Upper bound curve is never smaller than the lower bound curve

Split the Location Invariants

Number of locations will be increased by 2^{|Vars|}

Problem is NOT Solved

- We just guaranteed x_c^- and x_c^+ cannot be in one invariant
 - But one of them is enough for the problem

Restrict Invariants

- Add one new variable (z) to each Hybrid Automaton
- Add z = 0 to the invariant of all such locations
- Two automata are bi-similar

8

Restrict Invariants II

 Now we can assume after any positive amount of time, reachable points are defined by lower and upper bound curves.

Dec 16, 2012

Transformations

- Split Locations
- Restrict Invariants
- Replace each variable x by two variables l_x and u_x
 - Flows will be in the form of $\dot{x} = ax + b$
- Clock Transformation
 - x₀ is known and is only one value

•
$$\dot{x} = ax + b$$

•
$$x = x_0 e^{at} + \frac{b e^{at} - b}{a}$$

- Clock transformation replace x by t_x
 - Constants will be changed accordingly
- Constant will be in $\mathbb{Q} \cup \mathbb{Q} \ln \mathbb{Q}^+$
- Transform Initialized Singular automata to Initialized Stopwatch automata
- Transform Initialized Stopwatch automata to Timed automata
- Constants will be in $\mathbb{Q} \cup \mathbb{Q} \ln \mathbb{Q}^+$

What is New in the Problem?

- More Complex Regions
- Exponentially more Regions

Rational Timed Alutost Rational Timed Automaton

Partitioning

- Directly Considering Rational Constants Instead of Integers
- Only Considering Used Constants Instead of All Possible Constants

Finite Number of Partitions (same order)

Equivalent Classes are Bisimilar

- Any t satisfy diagonal conditions
- We can assume $t_1 > 0$
 - Otherwise t₂=0 is the obvious answer
- We can assume between [v₁] ≠ [v₁+t] there is no other class
 - Induction Hypothesis
- Suppose $z_1 \le c_z$ and $z_1 + t_1 \ge c_z$
 - Such z must exist
 - $z_1 < c_z \Rightarrow t_2 = c_z z_2$
 - $z_1 = c_z \Rightarrow t_2 = 0^+$

• t₂>0

Regions are Computable

- All constants are in $\mathbb{Q} \cup \mathbb{Q}ln\mathbb{Q}^+$
 - Closed under addition
 - Closed under multiplication by a rational number
- We can sort all horizontal and vertical lines (?)
- We can also sort all diagonal lines (?)
- If we can find empty regions then we can enumerate all regions (?)
- We also need to find whether
 - a region and invariant of a location intersect (?)
 - an edge connects two regions (?)
 - A time transition connects two regions (?)
 - Regions and constraints are convex

Dec 16, 2012

Regions are Computable II

 All these problems can be reduced to a more general decidability problem

$$\mathbf{I} = \bigwedge_{i \in m} \left(\left(\sum_{j \in n} a_{i,j} x_j \right) \sim_i r_i + \ln v_i \right)$$

- $m, n \in \mathbb{N}^+$
- $a_{i_j}, ri \in \mathbb{Q}$
- $v_i \in \mathbb{Q}^+$
- $\sim_i \in \{<,\leq\}$
- Variable Elimination Method like

Fourier-Motzkin

The Fourier–Motzkin Method

- Divide I into three sub-system of inequalities I_{-} I_{+} I_{0}
- For every pair of inequalities in I₋ and I₊ like
 - $2x y < 3 3x 5y \le 4$
 - Define $3(2x y) + 2(-3x 5y) < 3 \times 3 + 2 \times 4$ or -13y < 17
- Do the same until no variable remains!
- Therefore decidability of I is reduced to

$$\bigwedge_{i\in m'} (0\sim_i r_i + \ln v_i)$$

Decidability of $r \sim \ln v$

- $r \sim \ln v$ is true if and only if $e^r \sim v$
- We know $e^r \notin \mathbb{Q}$ (r \neq 0)
 - Therefore $e^r \sim v$ if and only if $e^r < v$
- We can find rational lower (l_i) and upper (u_i) bounds of e^r that are equal to it up to at least first i number of digits
 - If $v \leq l_i$ then $e^r < v$ is false
 - If $v \ge u_i$ then $e^r < v$ is true
- *i* must exists, otherwise
 - $l_{\infty} \leq e^r \leq u_{\infty}$ and $l_{\infty} = u_{\infty}$ which implies $e^r \in \mathbb{Q}$

Dec 16, 2012

THANK YOU