
1

Decidability for the Reachability Problem in
Initialized Almost Rectangular Hybrid Automata

Nima Roohi

Abstract—Hybrid automata which model systems with both discrete
and continuous behaviors are useful for analysis of the embedded systems.
However decidability is a big problem in analyzing these models. In this
paper we weaken the flow condition on the class Initialized Rectangular
Hybrid Automata and prove the reachability problem is still decidable for
this extended class of automata. While preserving all the reachability infor-
mation, we use and extend current methods to translate a given automaton
to a timed automaton with constants that could be non-rational. We then
prove that reachability is still decidable for this class of timed automaton.
Our approach is simple and enlarge a class of hybrid automata which is
somehow known as a border of decidability for the reachability problem.

I. INTRODUCTION

In modeling a digital system (with digital variables) which
interacts with a physical environment (with analog variables),
hybrid automata [4] can be a very useful model. For this rea-
son hybrid automata is used quite a lot in modeling embedded
systems. Modeling a system allows us to analyze it and check
if that system satisfy its requirements or not. One of the main
problems in the analysis of hybrid automata is the reachability
problem. Answer to this problem makes us able to verify if the
model satisfy some safety properties or not.

It is well-known that the reachability problem is decidable
for some special cases of hybrid automata, and undecidable
for many general cases. Henzinger et. al. proved in [5] that
the reachability problem is decidable for the class of Initialized
Rectangular Hybrid Automata (IRHA). In IRHA flow, guard,
reset, and invariant of different variables are independents of
each other and they are all bounded by two min/inf and max/sup
values (unbounded constraints as well as strict constraints are
also allowed). In this paper we relax the flow condition on each
variable of a hybrid automata in the following way: Each vari-
able in a IRHA has the flow of the form a ≤ ẋ ≤ b for some
constants a and b. But here we let flow of a variable to be in
the form alx+ bl ≤ ẋ ≤ aux+ bu for some constant al, au, bl,
and bu. For the sake of simplicity we only consider bounded
flow and non-strict constraints (more general cases can be con-
sidered in future works). We call the extended class Initialized
Almost Rectangular Hybrid Automata (IARHA), and prove that
the reachability problem is still decidable for this class of hybrid
automata.

II. PRELIMINARIES

N, Q, and R are respectively the set of natural, rational, and
real numbers. N+ and Q+ are respectively the set of positive
natural and rational numbers, and R≥0 is the set of non-negative
real numbers. ≤, ≥, > and < are the ordering relations on real
numbers with their ordinary meanings. We assume∞ is strictly
larger than all real numbers and −∞ is strictly smaller than all
real numbers. For all r ∈ R, we define abs(r) as an absolute

Department of Computer Science, University of Illinois at Urbana-
Champaign, USA

value of r. We also define r− and r+ to be lim
ε→0

r − abs(ε)

and lim
ε→0

r+abs(ε) respectively. For all numbers a,b ∈ R, [a,b]

is defined to be the set {x ∈ R|a ≤ x ≤ b}. (a, b], [a, b), and
(a,b) are defined in a similar way. For any set A, we show the
power set of A by P(A) and if A is finite we show number of
elements in A by |A|. For all sets A and B, sets A∪B, A∩B,
A−B, A

a
B, and A×B are respectively union, intersection,

difference, symmetric difference, and Cartesian product of A
and B. An, for some n ∈ N+, is A if n = 1 and An−1 ×A
otherwise, A→ B is a (total) function from A to B, and [A→
B] is the set of all (total) functions from A to B. For each
functions f : A→ B and g : C →D function f C g : A∪C →
B ∪D : x 7→ if x ∈ C then g(x) else f(x) endif. What is the
correct symbol for this operator? For all positive real numbers r,
ln(r) is the natural logarithm of r. For all functions f : A→ B
and C ⊆A, f(C) = {b ∈B|(∃a ∈ C)b= f(a)}. For all setsA,
functions f : A→ R, and real values t ∈ R we define function
f+ t :A→ R by (f+ t)(x) = f(x)+ t. For all functions f and
function argument a we may omit parentheses from f(a) and
write it fa when it causes no confusion. We use von Neumann
representation for natural numbers. It means 0 = {}, 1 = {0},
2 = {0,1}, . . . , n = {1, . . . ,n− 1} (for two natural numbers n
and m, n−m is still the minus arithmetic expression).

A rectangular region is specified by two elements l, u ∈
R∪ {−∞,∞} and defined to be {x : R|l ≤ x ≤ u}. We show
the set of all rectangular regions by K. For each rectangle
k ∈ K we denote elements of k by lk and uk. For all a ∈ R,
we display a rectangular region [a, a] by a when it causes no
confusion. Rectangular regions are closed under finite inter-
section. Therefore we may display a rectangular region as the
intersection of finite number of rectangular regions. For each
al, au ∈ R and bl, bu ∈ R a non-linear region is defined to be
{(y, x) ∈ R2|alx+ bl ≤ y ≤ aux+ bu}. We show the set of
all non-linear regions by L. For each p ∈ L we denote el-
ements of p by alp, aup, blp, and bup. We may also show
p by [alpx + blp, aupx + bup]. For all a, b ∈ R we display
[ax+ b,ax+ b] by ax+ b when it causes no confusion.

For every function x : R≥0 → R : t 7→ x(t), dx
dt is the first

derivation of x with respect to t and is displayed by ẋ when t is
known from the context. We show x(0) by x0. If ẋ = ax+ b
for some a,b ∈ R, then x is known to be:

x(t) =

 x0e
at+

beat− b
a

if a 6= 0

x0 + bt otherwise

Definition 1. A transition system T is a tuple (S, Σ,→, Sinit)
in which S is a possibly infinite set of states, Σ is a possibly
infinite set of labels,→⊆ S× Σ× S is a transition relation, and
Sinit ⊆ S is a set of initial sates. We write s α→ s′ instead of
(s,α, s′) ∈→. Also we show the set of all transition systems

2

by T . For a transition system T ∈ T , we display elements of
T by ST , ΣT , →T , and Sinit

T . In addition, whenever it makes
no ambiguity we may omit the subscript T to make notations
simpler.

Definition 2. For all transition systems A,B ∈ T we say A is
simulated by B (displayed by A≺B) if and only if there exists
a relation R ∈ SA × SB such that the following conditions are
true for R:
• ΣA ⊆ ΣB
• ∀(sa,sb) ∈R,s′a ∈ SA,α ∈ Σ
sa

α→A s
′
a⇒ (∃s′b ∈ SB)sb

α→B s
′
b ∧ (s′a,s′b) ∈R

• (∀sa ∈ Sinit
A)(∃sb ∈ Sinit

B)(sa,sb) ∈R
Also we call A and B bisimilar Correct this definition

Definition 3. An almost rectangular hybrid automaton H is a
tuple (Q, X, I, F, Σ, E, Qinit, Xinit), where
• Q is a finite non-empty set of (discrete) locations.
• X⊂ [R≥0→ R] is a finite set of variables. Assuming time
t ∈ [0,∞) is an implicit variable in each automaton, each
element of X is defined to be a differentiable function x :
R≥0→ R : t 7→ x(t).

• I ∈ [Q× X→K] maps each location q and variable x to a
rectangular region as the invariant of x in q.

• F ∈ [Q × X → L] maps each location q and variable x
to a region as the possible flows of x in q. It means
(dx

dt , x) ∈ F(q, x) wherever the location is q. Assuming
F(q,x) = [alx+ bl,aux+ bu], we define crs(F(q,x)) to be
{r ∈ R|alr+ bl = aur+ bu}. Also we simply assume that
if al = au then bl ≤ bu. Finally for all r ∈ R we define
F(q,x)(r) to be the rectangular region [alr+ bl,aur+ bu].

• Σ is a finite set of alphabet.
• E is a finite set of edges. Each edge e ∈ E itself is a tuple

of (s,d,b,g,j,r) in which
– s, d ∈ Q are source and destination locations, respec-

tively.
– b ∈ Σ is the label of e.
– g ∈ [X→ K] maps each variable x to a rectangular re-

gion as the guard condition of e for x.
– j ∈ P(X) is the set of variables that their values will have

jump after traversing e.
– r ∈ [j → K] maps each variable x to a rectangular re-

gion as the possible reset values of x after traversing e.
We write Se, De, Be, Ge, Je, and Re to denote different
elements of an edge e, respectively. Also we show (Ge)(x)
and (Re)(x) respectively by G(e,x) and R(e,x).

• Qinit ⊆ Q is the set of initial locations.
• Xinit ∈ [Qinit× X→K] maps each location q and variable x

to the set of initial values for x in q.
We show the set of all almost rectangular hybrid automata
(ARHA) by H. We only consider this class of hybrid automata
in this paper, therefore whenever we write hybrid automaton
(automata) we mean almost rectangular hybrid automaton (au-
tomata). For a hybrid automaton A, we display elements of A
by QA, XA, IA, FA, ΣA, EA, SA, DA, BA, GA, JA, RA, Qinit

A ,
and Xinit

A . Also we define a valuation function νA : XA→ R that
assigns a value to each variable of A. We show the set of all
possible valuation functions for A by νA. Finally, whenever

it makes no ambiguity we may omit the subscript A to make
notations simpler.

For all hybrid automata A and for all variables x ∈ XA we
define cnstA(x) to be the set of all constants in regions related
to x. Formally cnstA(x) = CI ∪CG ∪CR ∪CXinit in which

• CI = {r ∈ R|(∃q ∈ Q)r ∈ {lI(q,x),uI(q,x)}}
• CG = {r ∈ R|(∃e ∈ E)r ∈ {lG(e,x),uG(e,x)}}
• CR = {r ∈ R|(∃e ∈ E)r ∈ {lR(e,x),uR(e,x)}∧x ∈ Je}
• CXinit = {r ∈ R|(∃q ∈ Qinit)r ∈ {lXinit(q,x),uXinit(q,x)}}

Also for all hybrid automata A, function cnst(A) is defined to
be
⋃
x∈X

cnstA(x).

We define the semantics of a hybrid automaton as a transition
system it represents [7]. The semantics of a hybrid automaton
A is defined by transition system JAK = (S,Σ,→,Sinit) in which

• SJAK = QA×νA,
• ΣJAK = EA ∪R≥0,
• Sinit

JAK = {(q, ν) ∈ SJAK|q ∈ Qinit
A ∧ (∀x ∈ XA)ν(x) ∈

Xinit
A (q,x)}, and

• →JAK=→1 ∪→2 where
– →1 is the set of time transitions and for all t ∈ R≥0
(q,ν)

t→1 (q
′,ν′) if and only if q = q′ and for all x ∈ XA

there exists a function fx : [0, t]→ R such that fx(0) =
ν(x), fx(t) = ν′(x), (∀t′ ∈ [0, t]) fx(t

′) ∈ IA(q,x) and
dfx
dt (t

′) ∈ F(q,x)(fx(t′)).
– →2 is the set of jump transitions and for all e ∈ EA

(q, ν)
Be→2 (q′, ν′) if and only if q = SAe, q′ = DAe,

(∀x ∈ XA) ν(x) ∈ I(q, x) ∩ G(e, x), ν′(x) ∈ I(q′, x).
Also x ∈ JAe ⇒ ν′(x) ∈ R(e, x) and x /∈ JAe ⇒
ν(x) = ν′(x).

For all hybrid automata A,B ∈ H, A is simulated by B if
and only if JAK is simulated by JBK. Similarly A and B are
bisimilar if and only if JAK and JBK are bisimilar.

Definition 4. For a hybrid automaton A ∈ H, function
norm(A) returns a hybrid automaton B in which all elements
except EA remain unchanged. EB = {(Se,De,Be,g,Je,r)|∃e ∈
EA} such that r : Je → K : x 7→ R(e, x) ∩ I(De, x) and g :
X→K : x 7→ G(e,x)∩ if x ∈ Je then I(Se,x) else I(Se,x)∩
I(De,x) endif.

It is easy to see that for all hybrid automata A,B ∈ H, A =
norm(B) implies A ∼= B. Also for all hybrid automata A ∈
norm(H) the following conditions are true:

• (∀e ∈ E,x ∈ X)G(e,x)⊆ I(Se,x)
• (∀e ∈ E,x ∈ J)R(e,x)⊆ I(De,x)
• (∀e ∈ E,x ∈ (X− Je))G(e,x)⊆ I(De,x)

Definition 5. A hybrid automaton A ∈H is

DECIDABILITY FOR THE REACHABILITY PROBLEM IN IARHA 3

initialized ⇔ (∀e ∈ E,x ∈ X)F(Se,x) 6= F(De,x)⇒ x ∈ Je
rectangular⇔ (∀q ∈ Q,x ∈ X)F(q,x) ∈ K
singular ⇔ (∀q ∈ Qinit,x ∈ X)|Xinit(q,x)| ≤ 1,

(∀e ∈ E,x ∈ Je)|R(q,x)| ≤ 1, and
(∀q ∈ Q,x ∈ X) auF(q,x) = alF(q,x)∧

buF(q,x) = blF(q,x)
singular
linear

⇔ A is singular, and
(∀q ∈ Q,x ∈ X)F(q,x) ∈ K

timed ⇔ (∀q ∈ Qinit,x ∈ X)Xinit(q,x)⊆ {0},
(∀e ∈ E,x ∈ Je)R(q,x)⊆ {0}, and
(∀q ∈ Q,x ∈ X)F(q,x) = 1

We denote to the class of initialized hybrid automata by
IARHA, initialized and rectangular hybrid automata by IRHA,
initialized and singular hybrid automata by ISARHA, initial-
ized and singular linear hybrid automata by ISRHA, and timed
automata by TA.

In this paper we first transform automata from IARHA to
ISARHA. We then transform automata from ISARHA to
ISRHA, and finally from ISRHA to TA.

A. From IRHA to TA

Henzinger et. al. showed in [5] how to convert a hybrid
automaton A with n variables to a hybrid automaton B with
2n+1 variables, while preserving all the reachability informa-
tion of A. In their work A must be in the class of IRHA and
B is always in the class of ISRHA. The general idea is to en-
code each variable x in XA by two variables lx, ux in XB that
represent lower and upper bounds of x, respectively. One ad-
ditional clock variable is used to model passage of an infinite
small amount of time. Also for each new variable there will be
two bits encoded in the discrete locations. One represents if the
value of that variable is finite or infinite, and the other repre-
sents if the bound on that variable is strict or weak (< or ≤).
Then they define a function γ : QB × νB → P(QA× νA) such
that for all (∀q ∈ QB , ν ∈ νB) state (q, ν) in B is reachable if
and only if all states in γ(q, ν) are reachable. Confirm! The
approach of replacing a variable x with two variables lx and ux
works for the class of IRHA because of (at least) three reasons:
1. At time t = 0 and for any possible x0 and location q, either
F(q, x)(x0) = ∅ or F(q, x)(x0) 6= ∅. 2. If the lower bound of
a variable flow is smaller than or equal to the upper bound of
the flow at time 0 then this relation between lower and upper
bounds is preserved in any later time. 3. Possible values of x
in location q at any time is exactly defined by {1lx,ux1}. ‘{1’
(similarly ‘1}’) can be ‘[’ or ‘(’ (similarly ‘]’ or ‘)’) based on
the value of strictness bit encoded in location q. In general nei-
ther of these three properties are satisfied by automata in the
class of IARHA, so we need to first transform automata in this
class to automata that satisfy all of these properties, and then
use them to prove our decision procedure works for the class of
IARHA. Figure 3 shows two example non-linear flows. Flow in
Figure 1a does not satisfy the first property. Because for some
x0 in initial values of x we have F(q,x)(x0) = ∅ and for some
other values we have F(q,x)(x0) 6= ∅. Also flow in Figure 1b
does not satisfy the other two properties. Because although the
lower bound of ẋ is smaller than or equal to the upper bound
of ẋ at time 0, this relation between lower and upper bounds is

(a) x0 ∈ [−1,0]
−2x− 1≤ ẋ≤ 4x+1

(b) x0 ∈ [−1,1]
3x+1≤ ẋ≤ 2x+8

Fig. 1: Two examples non-linear flows. Horizontal axis is time
and vertical axis is value of sample variable x. Initial values
bounds are specified by two small line segments at each vertical
axes. Invariant of x is assumed to be exactly parts of the vertical
axes that are displayed.

not preserved in later times. Moreover it implies that possible
values of x in t > 0 is not equal to [lx(t),ux(t)] in which lx(t)
and ux(t) are lower bound and upper bound curves respectively.

B. From Solvable Hybrid Automata to TA

Henzinger et. al. showed in [3] that for a hybrid automaton
A from a special class of non-linear hybrid automata we can
transform A into a timed automaton B by encoding value of
each variable x ∈ XA to a value of variable tx ∈ XB . They call
this special automaton solvable.

Definition 6. For a hybrid automaton A and for a location
q ∈ Q and a variable x ∈ X, the variable x is determined in q
if F(q,x) = f(x) (for some f) and for all initial values x0 ∈ R
the problem ẋ = f(x) ∧ x(0) = x0 has an algebraic solution
xq,x0

(t) such that for each constant c that appear in constraints,
xq,x0(t)− c has finite number of roots.

For a location q ∈ Q and a variable x ∈ X, q is called defi-
nite for x iff |Qinit(q,x)| ≤ 1. Similarly an edge e ∈ E is called
definite for x iff x ∈ J(e)∧ |R(e,x)|= 1.

In automaton A, a variable x of X is solvable if the following
three conditions hold:

1. For all locations q ∈ Q, variable x is determined in q.
2. For all locations q ∈ Q, location q is definite for x.
3. For all edge e ∈ E if F(Se) 6= F(De) then edge e is definite

for x.
A non-linear hybrid automaton A is solvable iff all of its vari-
ables are solvable.

Lemma 1. All automata in the class of ISARHA are solvable.

Proof. For all a,b,x0 ∈ R, if ẋ= ax+ b (all flows in this class
are in this form) then x(t) is x0eat+ beat−b

a if a 6= 0 and x0+bt
otherwise. This means x(t) has an algebraic solution. Also for
all c ∈ R we know x(t)− c has at most one root. Therefore first
condition is satisfied by the automata in this class.

By definition of the singular automata we know (∀q ∈
Qinit, x ∈ X)|Xinit(q, x)| ≤ 1 which imply the second condi-
tion. By definition of the singular automata we also know
(∀e ∈ E, x ∈ Je)|R(q, x)| ≤ 1. Moreover by the definition of
the initialized automata we know (∀e ∈ E, x ∈ X)F(Se, x) 6=
F(De,x)⇒ x ∈ Je. These two imply the third condition.

4

In this paper we use this technique to transform automata in
the class of ISARHA to automata in the class of TA. For all
hybrid automata A in the class of ISARHA, we display the au-
tomata after transformation by solve(A). It is important to note
that if cnst(A) ⊂ Q then cnst(solve(A)) ⊂ Q ∪Q lnQ+ in
which Q lnQ+ is defined to be {r lnv|r ∈Q∧ v ∈Q+}.

C. Fourier-Motzkin variable elimination method

Having a set of inequalities of the form I =
∧
i∈m

∑
j∈n

ai,jxj ∼i

bi in whichm,n ∈ N and for all i ∈m and j ∈ n we have ai,j ∈
R and bi ∈ R are constants, xj ∈ R is variable, and∼i∈ {<,≤}
is an ordering relation, one can use the Fourier-Motzkin variable
elimination method [6, Sec 5.4] to decide weather there is any
x1, . . . ,xn ∈ R that satisfy all inequalities in I or not. Variable
elimination methods usually take as an input a finite number of
of inequalities and produce a new finite number of inequalities
as their result. Each variable elimination method should have
three characteristics:

1. Number of variables in the output should be smaller than
their number in the input.

2. The new system should be satisfiable if and only if the orig-
inal system is satisfiable.

3. From the answer to the new system it should be possible to
find an answer in the original system.

In this paper we only use the Fourier-Motzkin method to de-
cide whether the system I is satisfiable or not. Therefore we
are not interested in the third condition. To remove variable
x from I using the Fourier-Motzkin method, we should divide
constraints in I into three sets: 1. I+ contains constraints that
coefficient of x is positive in them, 2. I− contains constraints
that coefficient of x is negative in them, 3. I0 contains con-
straints that coefficient of x is zero in them. If either I+ or
I− was empty, simply remove all the constraints that contains
x (coefficient of x is non-zero for them) and return remaining
constraints as result. Otherwise for each pair of constraints in
c+ ∈ I+ and c− ∈ I−, assuming coefficients of x are respec-
tively a+ and a−, create a new constraint a+ × c− + a− × c+
(obviously coefficient of x in the new constraint is 0). If at least
one of c+ or c− uses the strict inequality relation (i.e. <), the
new constraint is also strict. Otherwise the new constraint will
be non-strict (i.e. ≤). The new system contains all the new con-
straints, I0, and none of the constraints in I− or I+. It has one
less variable, and one can prove that it satisfies the second con-
dition of the elimination method. We can continue eliminating
variables till no more variable exists in the system. All that will
remain is a finite number of inequalities such that each inequal-
ity compares (strict or non-strict) a real value with 0. Therefore
Fourier-Motzkin method reduces the decidability of the origi-
nal system to the decidability of comparison of real numbers
and zero.

III. FROM IARHA TO TA

To translate an automaton A ∈ H into a timed automaton,
while preserving all the reachability information, the general
idea is to use the same method described in section II.B and for
each variable x in XA define two variables xl and xu to track
the lower bound and upper bound values of x. In the class of

IRHA when a variable x is reset to [a,b] and ẋ ∈ [c,d] we know
that after any amount of time t ∈ R≥0 lower value of x is a+ ct
and upper value of x is b+ dt. In general this property does
not hold for the class of IARHA. If |crs(F(q,x))|= 1 and xc ∈
crs(F(q, x)) for some xc ∈ R then flow of x is not valid for
either x−0 or x+0 which makes no time transition possible (see
Figure 3 for two examples). So if the initial values of x contain
both x−c and x+c then we cannot use the lower bound and upper
bound variables idea. Even if the initial values of x contain one
of x−c and x+c for which no valid x flow exists, there is still
some point in the initialization rectangle that can have a time
transition and some point has no valid time transition.

Definition 8 solves the first problem by splitting locations of
the given automaton into new locations with more restricted in-
variants that prevent the first problem to occur. Definition 9
solves the second problem by only adding one new variable to
the given automaton and restricting values of the new variable
in the problematic locations. We also prove that none of these
transformations loses the reachability information of the origi-
nal automaton.

Definition 7. For a hybrid automaton A ∈ H, function
pivotsA : QA → P(XA) takes a location q as an argument and
returns a subset of variables in A. Variable x ∈ XA is in the re-
turned set if and only if the lower bound and the upper bound of
FA(q,x) has one and only one common value and that common
value belongs to the invariant of x in q. For all q ∈ QA return
value of pivotsA(q) is formally defined as follows:

(∀x ∈ X)x ∈ pivotsA(q)
⇔

|crs(FA(q,x))|= 1∧ crs(FA(q,x))⊆ IA(q,x)

Definition 8. Function split :H→H takes a hybrid automaton
A as input, and returns hybrid automaton B which is formally
defined as follows:
• QB = {(q,Y) ∈ Q×PX|Y ⊆ pivotsA(q)}

Therefore every location q is divided into 2|pivotsA(q)| loca-
tions.

• XB = XA
• IB((q,Y),x) =

IA(q,x) if x /∈ pivotsA(q)
IA(q,x)∩{x ∈ R|x≤ xc} if x ∈ Y
IA(q,x)∩{x ∈ R|x≥ xc} otherwise

In the later two cases we assume {xc} = crs(FA(q,x))1.
Invariants of the variables outside of pivotsA(q) will not
change. All other invariants will be divided on xc the only
point in crs(FA(q,x)), so x+c and x−c cannot both be in the
possible values of x0.

• FB((q,Y),x) = FA(q,x)
• ΣB = ΣA
• EB={((Se,Y),(De,Y ′),Be,Ge,Je,Re)|

(∃e ∈ EA,Y,Y ′ ∈ PX)(Se,Y) ∈ QB ∧ (De,Y ′) ∈ QB}
When a location is divided into two (or more) locations,
incoming and outgoing edges to and from this location
should be duplicated such that we do not lose any possible
transition (See Lemma 2).

1 We know crs(FA(q,x) has only one element. Because x ∈ Y is only pos-
sible when x ∈ pivotsA(q) by definition implies |crs(FA(q,x))| = 1. So our
assumption simply defines xc in terms of crs(FA(q,x)).

DECIDABILITY FOR THE REACHABILITY PROBLEM IN IARHA 5

• Qinit
B = {(q,Y) ∈ QB |q ∈ Qinit

A }
• Xinit

B ((q,Y),x) = Xinit
A (q,x)

Figure 2 displays an example of applying the split function.
Automaton A has two locations 1 and 2 plus one variable x.
Automaton B has three locations (1,{x}), (1,{}), and (2,{})
plus the same variable x. Since x+1 and 2x+3 are equal in
x=−2 (and no other point), location 1 in A is divided into two
locations in automaton B. But since 2x and 2x+ 3 are never
equal, location 2 in A is not divided in automaton B. Also
since 1 is an initial location in A, both (1,{}) and (1,{x}) are
initial locations in B (initial values of x is not changed). Also
IB((1, {x}), x) = IB(1, x) ∩ (−∞,−2] and IB((1, {}), x) =
IB(1,x)∩ [−2,∞). For each edge in A with 1 as its source and
destination locations, we have four new edges in B with source
and destination locations as specified in this figure. For each
edge in A with 1 as its source or destination location (but not
both), we have two new edges in B with source and destination
locations as specified in this figure. Other elements of the edges
are not changed in automatonB, therefore they are exactly same
as edges in A with the same number.

Lemma 2 states that function split does not change behavior
of its input automaton.

Lemma 2. For all hybrid automata A,B ∈ H, A and B are
bisimilar if B = split(A).

(∀A,B ∈ H)B = split(A)⇒ B ∼= split(A)

Proof. We just define aRb to be a function from QA × νA to
QB × νB and bRa to be a function from QB × νB to QA× νA.
Based on these two functions it is easy to see that A and B
simulate each other and therefore A∼=B.

For all p = ((q,Y), ν) ∈ QB × νB we define bRa(p) to sim-
ply be (q, ν). For all p = (q, ν) ∈ QA × νA we define aRb(p)
to be ((q, Y), ν) in which Y is defined as {x ∈ X|(∃xc ∈
crs(FA(q,x)))P1 ∧ (P2 ∨P3)} such that P1 is x ∈ pivotsA(q),
P2 is ν(x) < xc, and P3 is ν(x) = xc ∧ FA(q,x)(x−) 6= ∅. By
P1 we know xc is unique. When P2 is true, we must have x ∈ Y
in order to ν(x) ∈ IB((q,Y), x). When x = xc we should be
careful. In this case, by definition both x ∈ Y and x /∈ Y can be
true. But only one of the resulting locations can have time tran-
sition. If FA(q,x)(x−) 6= ∅ is true, it means for values below xc
possible flows of x is not empty, therefore x should belongs to
Y in order to have time transitions.

Automaton split(A) has a nice property which is for all loca-
tion q ∈ Q and variable x ∈ X if F(q,x)(x0) has only one element
xc then we know at least one of the followings is true: 1. xc /∈
I(q,x), 2. xc ∈ I(q,x)∧x+c /∈ I(q,x) (it means xc is the upper
bound of the invariant of x in q) 3. xc ∈ I(q,x)∧ x−c /∈ I(q,x)
(it means xc is the lower bound of the invariant of x in q). We
define and use split(A) because we want to use similar approach
which is used in [5]. We want to replace every variable x in the
given hybrid automaton with two variables that track lower and
upper bounds of possible values of x. But there is still one prob-
lem in split(A). As an example assume x is a variable which is
reset to [1,2] by edge e and q = De. Also assume I(q,x) = [1,3]
and F(q,x) = [−2x+ 3,−3x+ 4]. If x0 6= 1 there will be no
time transition in q. Because (∀x ∈ (1,2])−2x+3>−3x+4.

At x0 = 1 even if we can have time transition (not possible in
this example) the same transition is possible in another location
q′ which is same as q except instead of x≥ 1 in the invariant of
q, x ≤ 1 is in the invariant of q′. So for each variable x and lo-
cation q and based on F(q,x) and I(q,x) we may restrict invari-
ants in q such that even if no constraint was forced by F(q,x) no
time transition would be possible in q. Definition 9 formalizes
this transformation. After this transformation we can replace
each variable x by two variables xl and xu that track lower and
upper bounds of x respectively.

Definition 9. Function restr :H→H takes a hybrid automaton
A as input, and return hybrid automaton B which is formally
defined as follows:
• QB = QA
• XB = XA ∪{z} (assuming z /∈ XA)
• IB = IA C {(q, z) 7→ k} in which k is 0 if and only if

the following condition is true and (−∞,∞) otherwise.
(∃x ∈ XA)(∃x0 ∈ I(q,x))x0 /∈ F(q,x)(x0)

• FB = FAC {(q,z) 7→ 1|q ∈ QB}
• ΣB = ΣA
• EB = {(Se,De,Be,g,Je∪{z}, r)|e ∈ EA} where

g = Ge∪{z 7→ (−∞,∞)}
r = Re∪{z 7→ 0}

• Qinit
B = Qinit

A

• Xinit
B = Xinit

A C {(q,z) 7→ 0|q ∈ Qinit
B }

Lemma 3. For all hybrid automata A ∈ split(H) and B ∈ H,
A and B are bisimilar if B = restr(A).

(∀A ∈ split(H),B ∈H)
B = restr(A)⇒B ∼= restr(A)

Proof. Obviously B ≺ A, so we only need to show A ≺ B.
The only reason that may prevent B to simulate A is the ad-
dition of ((q,Y), z) 7→ 0 to some of the invariants in B. Sup-
pose automaton JAK can have a time transition t at ((q,Y),x0),
for some q ∈ Q, Y ⊆ X, and x0 ∈ R, and automaton JBK can-
not have that time transition. If we are at the initial state then,
by definition of the split function, both ((q,Y ∪ {x}), x0) and
((q, Y − {x}), x0) are initial states too. Moreover, for the
one which is different with ((q, Y), x0) we have time transi-
tion. If we get to ((q, Y), x0) after traversing an edge e with
label Be, again by definition of split, we could went to both
((q,Y ∪{x}),x0) and ((q,Y −{x}),x0) by traversing another
edge with the same label Be. Moreover, for the one which is dif-
ferent with ((q,Y),x0) we have time transition. We know that
function restr does not change this property of its input. Hav-
ing this property in B it is straightforward to create the desired
simulation relation.

Lemma 4. For all automaton A ∈ restr(split(H)), and for
all reachable states (q, ν) ∈ (Q, ν), if ν(z) > 0 then (∀x ∈
X)F(q,x)(ν(x)) 6= ∅.

Proof. Assume F(q, x) = [alx+ bl, aux+ bu]. If al = au we
know bl ≤ bu. Therefore (∀r ∈ R)F(q, x)(r) 6= ∅. If al 6=
au then (∃xc ∈ R)crs(F(q, x)) = {xc}. If F(q, x)(ν(x)) =
∅ we know either ν(x) < xc or ν(x) > xc. For the case
ν(x) < xc (similar argument apply to the other case) we know

6

‐3 ≤ x ≤ 2

x+1 ≤ ẋ ≤ 2x+3

‐3 ≤ x ≤ 2

2x ≤ ẋ ≤ 2x+3

1 2

1

2

4

3

(a) Hybrid Automaton A

‐3 ≤ x ≤ ‐2

x+1 ≤ ẋ ≤ 2x+3

‐3 ≤ x ≤ 2

2x ≤ ẋ ≤ 2x+3

(1,{x})

(2,{})

‐2 ≤ x ≤ 2

x+1 ≤ ẋ ≤ 2x+3

(1,{})

3

3

4

4
1

1

2

2

2 2

(b) Hybrid Automaton B = split(A)

‐3 ≤ x ≤ ‐2

x+1 ≤ ẋ ≤ 2x+3

‐3 ≤ x ≤ 2

2x ≤ ẋ ≤ 2x+3

(1,{x})

(2,{})
‐2 ≤ x ≤ 2

x+1 ≤ ẋ ≤ 2x+3

z=0

(1,{})

3

3

4

4
1

1

2

2

2 2

(c) Hybrid Automaton C = restr(B)

Fig. 2: Splitting a sample hybrid automaton in Figure a using function split first and then function restr (results are respectively
displayed in Figure b and Figure c). In addition to source and destination locations, each edge has four more elements. Numbers
on the edges of automata B and C define these elements based on the edges of automaton A with the same number (the same
argument is hold about initialization values of variables). Location 1 in automaton A is divided into two locations (1,{x}), (1,{})
in automaton B. Also automaton C has one variable (z) more than automaton B. Dividing location 1 on x = −2 guarantees
that none of the new locations has both −2− and −2+ in its invariant. Also adding z = 0 to the invariants of location (1,{}) in
automaton C guarantees in no reachable state of automaton C lower bound flow is larger than upper bound flow.

F(q, x)(ν(x)) = ∅ if and only if F(q, x)(x−c) = ∅. But func-
tion restr add z = 0 to the invariants of locations for which
F(q,x)(x−c) = ∅.

Theorem 1. For all hybrid automaton A ∈ H the following is
true:

(∀q ∈ Q,x ∈ X,k ∈ K)(lk ≤ x0 ≤ uk)
⇒

max(lk(t), lI(q,x))≤ x(t)≤min(uk(t),uI(q,x))

in which, assuming F(q,x) = [ax+ b, cx+ d], lk(t) and uk(t)
are defined to be:

lk(t) =

 lke
at+

b(eat− 1)

a
If a 6= 0

lk + bt otherwise

uk(t) =

 uke
ct+

d(ect− 1)

c
If c 6= 0

uk + dt otherwise

Proof. By definition we know lI(q,x) ≤ x(t) ≤ uI(q,x), there-
fore assuming lI(q,x) ≤ lk(t) and uk(t) ≤ uI(q,x) we prove all
points between lk(t) and uk(t) (inclusive) are reachable and no
other point is reachable.

We first prove that no point below lk(t) is reachable (sim-
ilar argument proves that no point above uk(t) is reachable).
Because x(t) is differentiable it is continuous, and because
x0 ≥ lk(0) = lk if x(t) < lk(t) then (∃tc ∈ [0, t))(x(tc) =
lk(tc)∧ x(t+c) < lk(t

+
c)). But this means ẋ(tc) < lk(tc) which

is a contradiction.
To prove that all the points in between are reachable we need

to consider different cases (later cases may use what is proved
in the former cases): Confession: I have a serious problem with
“THE”. “the former cases” or “former cases”?
• a= c

– a= 0∧ c= 0
[lk+ bt,uk+dt] = [lk+ bt,uk+ bt]∪ [uk+ bt,uk+dt]
If ẋ= b then all points in the first set are reachable. All
points in the second set are reachable if we let x0 = uk
and b≤ ẋ≤ d.

– a 6= 0∧ c 6= 0

∗ b= d
x0 =λlk +(1−λ)uk for some λ ∈ [0,1].
x(t)=x0e

at+ b(eat−1)
a

=λ
(
x0e

at+ b(eat−1)
a

)
+(1−λ)

(
x0e

at+ b(eat−1)
a

)
=λlk(t)+ (1−λ)uk(t).

∗ lk = uk
ẋ= λ(ax+b)+(1−λ)(cx+d) for some λ ∈ [0,1].
x(t)=x0e

at+ (λc+(1−λ)d)(eat−1)
a

=λ
(
x0e

at+ b(eat−1)
a

)
+(1−λ)

(
x0e

at+ c(eat−1)
a

)
=λlk(t)+ (1−λ)uk(t)

∗ general case
[lk(t),uk(t)]=[lk(t),uke

at+ b(eat−1)
a]∪

[uke
at+ b(eat−1)

a ,uk(t)]
All points in the first set are proved to be reachable
in the first item and all points in the second set are
proved to be reachable in the second item.

• a 6= c

[lk(t),uk(t)]=[lk(t),uke
at+ b(eat−1)

a]∪
[uke

at+ b(eat−1)
a ,uk(t)]

All points in the first set are already proved to be reach-
able (a = c and b = d). To prove all points in the second
set (x0 = uk) are also reachable we consider the following
cases:
– 0 ∈ [ax0 + b,cx0 + d]
[lk(t), uk(t)] = [lk(t), x0) ∪ {x0} ∪ (x0, uk(t)]. Obvi-
ously x0 is reachable after any time t. We prove all
points in (x0, uk(t)] are reachable. Similar argument
proves all points in [lk(t), x0) are reachable too. Proof

DECIDABILITY FOR THE REACHABILITY PROBLEM IN IARHA 7

for the case c = 0 is trivial, so we only prove the case
c 6= 0. Let ẋ= λ(cx+ d) for some λ ∈ (0,1]. Therefore
x(t) = x0e

λct + λd(eλct−1)
λc . We know lim

λ→0
x(t) = x0,

which implies all points in (x0,uk(t)] are reachable.
– 0< ax0 + b
[ax+ b,cx+d] = ([0, cx+d]− [0,ax+ b])+ {ax+ b}.
We just proved that for ẋ ∈ [0, cx+ d] all the points
in [x0, x0e

ct + d(ect−1)
c] and for ẋ ∈ [0, ax+ b] all the

points in [x0, x0e
at + b(eat−1)

a] are reachable. This
means if ẋ ∈ ([0, cx+ d]− [0,ax+ b]) then all points in
(x0e

at + b(eat−1)
a , x0e

ct + d(ect−1)
c] are reachable. We

also know that if ẋ ∈ ax+ b then x0e
at + b(eat−1)

a is
reachable.

– cx0 + d < 0 similar to the previous case.

From now on we assume that the given automaton satisfy the
given conditions in Theorem 1, and proceed to formally define
a new automaton in which all the reachability information is
preserved. We are given an automaton A and, while all the
reachability information is preserved, we create a singular au-
tomaton B. The observation alphabet ΣB is same as ΣA. For
each variable x ∈ XA there are two variables xl and xu in XB .
Flow of the new variables are simply lower bound and upper
bound flows of the original variable respectively. FB(q,xl) =
a1FA(q,x)+b1FA(q,x) and FB(q,xu) = a2FA(q,x)+b2FA(q,x). In-
variants of the new variables are defined as follows: IB(q,xl) =
(−∞, uIA(q,x)] and IB(q, xu) = [uIA(q,x),∞). For all edge
e ∈ EA and x ∈ XA, if x ∈ JAe then R(e, x) = k1 implies
R(e,xl) = [lk1 , lk1] and R(e,xu) = [uk1 ,uk1], also G(e,x) = k2
implies G(e,xl) = (−∞, lk2] and G(e,xu) = [uk2 ,∞). On the
other hand if x /∈ JAe then Page 102, second paragraph, the last
two lines

A. From Initialized SARHA to TA

The next step is to use the Clock Translation technique to
translate an automaton A in the class of ISARHA to an automa-
ton B in the class of ISRHA. The translation is well explained
in [3], we show translated hybrid automaton by solve(A). The
only problem is that if all constants in A are rational, we may
end up with some constants in Q lnQ+. But [3] needs that A to
be rationally solvable, so all such r must belongs to Q. Next we
prove that this special case is still decidable.

B. Decidability for Timed Automata

Suppose A ∈ H is a hybrid automaton such that cnst(A) ⊂
Q. Also suppose B ∈ H is another hybrid automaton equal to
solve(restr(split(A))). We know cnst(B) ⊂ Q∪Q lnQ+. In
this section we prove that the reachability problem is still decid-
able for B. Using the same approach used in [2], we first parti-
tion νA into a finite set of equivalence classes. We then prove
that all valuation functions in each class are bisimilar. And fi-
nally, we prove that creating a finite automaton using the defined
equivalence relation is decidable.

In [2] it is assumed that all constants are rational, we call a
timed automaton with only rational constants a rational timed
automaton. Similarly we call a timed automaton with constants

(a) Rational Timed Automaton (b) Almost Rational Timed Au-
tomaton

Fig. 3: Finite partitioning for two two dimensional timed au-
tomata. Constants in automaton a are all rational, however con-
stants in automaton b are all either rational or multiplication of a
rational and natural logarithm of another rational number. In the
rational automaton a all the bounded regions are either points,
equal line segments, or equal triangles. However, in the almost
rational automaton b all the bounded regions are either points,
line segments (not necessarily equal), triangles (not necessarily
equal), parallelogram, or even trapezoid.

in Q ∪Q lnQ+ an almost rational timed automaton. Unlike
in [2], here we cannot define integer part and fractional part of
a value. Because in rational timed automaton, after multiplying
every constant by a constant factor, we have a timed automaton
in which all constants are integers and 1 is always their com-
mon divisors. Therefore if we partition values between mini-
mum 0 and maximum cx by cx+1 equally separated lines, it is
guaranteed that for all possible set of valid constraints on val-
ues of x, values in each partition satisfy the exact same subset
of constraints. But in almost rational timed automaton, there
is no such common divisor. Furthermore, if we want to con-
sider all the possible values between 0 and cx, number of parti-
tions will become exponential. Figure 3a shows partitions for a
two dimensional rational timed automaton, and Figure 3b shows
partitions for a two dimensional almost rational timed automa-
ton if we consider all the possible constants between 0 and 2
(maximum constant in these examples). It is easy to see that
number of partitions in Figure 3b are exponentially more than
number of partitions in Figure 3a. Furthermore in addition to
points, lines, and triangles, bounded regions in Figure 3b can
be parallelogram or even trapezoid, which makes comparison
of fractional parts difficult. Therefore we use another method
to define equivalency between valuations of an almost rational
timed automaton.

Definition 10. For a timed automaton A, an equivalence rela-
tion ≡A is defined on ν as follows: (∀ν1, ν2 ∈ ν)ν1 ≡A ν2 ⇔
P1∧P2. The following two conditions define P1 and P2 respec-
tively.
P1 : (∀x ∈ X, c ∈ cnst(x),∼∈ {=,<})

ν1(x)∼ c⇔ ν2(x)∼ c
P2 : (∀x,y ∈ X, cx ∈ cnst(x), cy ∈ cnst(y),∼∈ {=,<})

ν1(x)− cx ∼ ν1(y)− cy⇔ ν2(x)− cx ∼ ν2(y)− cy
We may write ≡ instead of ≡A whenever A is known from the
context. Moreover, we define ν/ ≡ to be {[ν] ∈ Pν|(∀ν′ ∈

8

ν)ν ≡ ν′⇔ ν′ ∈ [ν]}.

Lemma 5. For a timed automaton A, ≡ partitions ν to a finite
number of equivalent classes.

Proof. X is finite, and for all x ∈ X we know that cnst(x) is also
finite. Therefore each of P1 and P2 in Definition 10 defines a
finite number of equivalent classes, which implies P1 ∧P2 also
defines a finite number of equivalent classes.

Theorem 2. For a timed automaton A, both of the following
propositions are true:

1. (∀x ∈ X, c ∈ cnst(x),∼∈ {=,<},ν1,ν2 ∈ ν)
ν1 ≡ ν2⇒ (ν1(x)∼ c⇔ ν2(x)∼ c)

2. (∀ν1,ν2 ∈ ν, t1 ∈ R≥0)
ν1 ≡ ν2⇒ (∃t2 ∈ R≥0)(ν1 + t1)≡ (ν2 + t2)

First proposition guarantees that ν1 and ν2 satisfy the exact
same set of constraints inA. Second proposition guarantees that
for any reachable point from ν1 there is an equivalent reachable
point from ν2 (therefore ≡ defines a bisimulation).

Proof. First proposition is true by the definition of ≡ (P1 in
Definition 10). For the second proposition, we define func-
tion fν1,t1 : [0,1]→P(ν/≡) : λ 7→ {[ν1+αt1]|α ∈ [0,λ]} and
prove that proposition using the induction on |fν1,t1(1)|.

We know [ν1] ∈ fν1,t1(1), therefore base of induction, when
|fν1,t1(1)| = 1, implies fν1,t1(1) = {[ν1]} = {[ν2]} which
means in this case t2 can be 0.

For the inductive step, we assume |fν1,t1(1)| = n+ 1 for
some n ∈ N+. There must be some strictly monotonic func-
tion g : n+1→ [0,1] such that g(0) = 0, g(n) = 1, and (∀i, j ∈
n+1)i 6= j⇒ [ν1+ g(i)t1] 6= [ν1+ g(j)t1]. We let λn = g(n).
That is λn < 1 and |f(λn)| = n. Therefore, by the induction
hypothesis we know (∃tn ∈ R≥0)(ν1 +λnt1) ≡ (ν2 + tn). Let
ν′1 = ν1 + λnt1, ν′2 = ν2 + tn, and t′1 = (1− λn)t1. We know
fν′

1,t
′
1
(1) = {[ν′1], [ν′1+ t′1]}, and it sufficient to find t′2 such that

ν′2 + t′2 ≡ ν′1 + t′1.
By the induction hypothesis we know [ν′1] 6= [ν′1 + t′1], there-

fore (∃z ∈ X, cz ∈ cnst(z),∼∈ {=, <})ν′1(z) ∼ cz < (ν′1 +
t′1)(z)∼ cz)2. Fixing that z and cz , we define t′2 to be

t′2 =

{
cz − ν′2(z) if ν′1(z)< cz
0+ if ν′1(z) = cz

The case ν′1(z)> cz is not possible, because otherwise by t′1 >
0 we know (ν′1 + t′1)(z) > cz which is a contradiction. Also it
is easy to see t′2 > 0. Now we prove ν′2 + t′2 ≡ ν′1 + t′1.

We know (∀x,y ∈ X,ν ∈ ν, t ∈ R) ν(x)− ν(y) = ν(x)+ t−
ν(y)− t. Therefore assuming ν′1 and ν′2 satisfy P2 in Defini-
tion 10, we know ν′1 + t′1 and ν′2 + t′2 also satisfy P2.

For P1 in Definition 10, it is enough to prove (∀x ∈ X, cx ∈
cnst(x),∼∈ {<,=,>}) ν′1(x) + t′1 ∼ cx ⇒ ν′2(x) + t′2 ∼ cx.
If ν′1(x) ≥ cx we know ν′2(x) ≥ cx, t′1 > 0, and t′2 > 0. These
imply ν′1(x) + t′1 > cx and ν′2(x) + t′2 > cx. Therefore in the
following we assume ν′1(x) < cx. Furthermore we assume
ν′1(x)+ t

′
1 ≤ cx because otherwise |fν′

1,t
′
1
(1)|> 2 which would

be a contradiction.
For the case ν′1(z) < cz we have ν′1(z) + t′1 = cz and either

ν′1(x)− ν′1(z)− cx + cz = 0 or ν′1(x)− ν′1(z)− cx + cz < 0

2 We know P2 in Definition 10 is always satisfied by ν′1 and ν′1 + t1.

(the other case is not possible since it implies |fv′1,t′1(1)| >
2). ν′1(x)− ν′1(z)− cx + cz = ν′1(x)− cx + t′1. Therefore if
ν′1(x)− ν′1(z)− cx+ cz = 0 then ν′2(x)− ν′2(z)− cx+ cz = 0
and ν′1(x) + t′1 = cx. Moreover ν′2(x) + t′2 = ν′2(x) + cz −
ν′2(z) = cx = ν′1(x) + t′1. If ν′1(x) − ν′1(z) − cx + cz < 0
then ν′2(x)− ν′2(z)− cx + cz < 0 and ν′1(x) + t′1 − ν′1(z)−
t′1 − cx + cz = ν′1(x) + t′1 − cx < 0. Moreover ν′2(x) + t′2 =
ν′2(x)+ cz − ν′2(z)< cx.

For the case ν′1(z) = cz we must have ν′1(x) + t′1 < cx be-
cause otherwise |fv′1,t′1(1)|> 2. Also ν′2(x)+t

′
2 < cx is obvious

in this case.

It is remained to prove there is a computational method to
decide about each of the following two problems:

1. For each almost rational timed automaton A, every valua-
tion function class [ν] ∈ ν/ ≡, and every location q ∈ Q,
whether (∃νq ∈ [ν])(∀x ∈ X)νq(x) ∈ I(q, x) is true or
false.

2. For each almost rational timed automaton A, every two
valuation function classes [ν1], [ν2] ∈ ν/ ≡, and every
edge e ∈ E, whether we can go from [ν1] to [ν2] using e
or not.

Both of these problems can be easily reduced to a more gen-
eral problem which is defined and proved to be decidable in
Lemma 6.

Lemma 6. For all n,m ∈ N and finite set of variables X, there
is a decision procedure that tells us whether the following is
true or false (assuming (∀i ∈ m,j ∈ n) qi,j , ri, vi ∈ Q∧ ui ∈
Q+∧ ∼i∈ {<,≤}∧xj ∈ X):

∧
i∈m

∑
j∈n

qi,jxj

 ∼i ri + vi lnui


Proof. We can use the Fourier-Motzkin variable elimination
method [6] to reduce this problem to∧

i∈m′

(0 ∼′i r′i + ln v′i)

in which (∀i ∈ m′)(r′i ∈ Q∧ v′i ∈ Q+∧ ∼′i∈ {<,≤}). This is
possible because (∀q, r ∈ Q,u,v ∈ Q+)(q+ r ∈ Q∧ qr ∈ Q∧
q lnu+ r lnv ∈Q lnQ+ ∧ rq lnu ∈Q lnQ+). Therefore for all
r ∈Q, v ∈Q+, and∼ {<,≤}we only need to be able to decide
whether r ∼ lnv is true or not. Obviously r ∼ lnv⇔ er ∼ v.
If r = 0 then er = 1 and 1 ∼ v is known to be decidable. For
the case when r 6= 0, Aigner et. al. proved in [1] that er /∈ Q.
Therefore er ∼ v⇔ er < v. Now assume li ∈Q+ and ui ∈Q+

are lower and upper bounds of er which are equal to it upto i ∈
N+ decimal numbers. For all finite i ∈ N+ we can compute both
li and ui. Shall we put reference for this two? The following
two propositions help us to find if er ∼ v is true or false.

1. (∃i ∈ N+)li > v⇒ er > v
2. (∃i ∈ N+)ui < v⇒ er < v

There must be some i ∈ N+ for which li > v or ui < v be-
comes true, because otherwise we have lim

i→∞
li ≤ v ≤ ui and

lim
i→∞

li = lim
i→∞

ui. This means that v = er which is a contradic-

tion because we know er /∈ Q. Therefore we know there is a
decision procedure that always terminates and always decides
correctly whether er ∼ v is true or not.

DECIDABILITY FOR THE REACHABILITY PROBLEM IN IARHA 9

IV. CONCLUSION

In this paper we relaxed the flow condition on Initialized
Rectangular Hybrid Automata from rectangular constraint a ≤
ẋ ≤ b for some rational values a and b to non-linear constraint
a1x+b1 ≤ ẋ≤ a2x+b2 for some rational values a1, a2, b1 and
b2 and prove that the reachability problem is still decidable for
the extended class of hybrid automata. The first future exten-
sion to this work could be considering the case when flows are
not necessarily bounded and they can also be strict inequalities.
Another future work could be considering another class of hy-
brid automata, for which reachability is proved to be decidable,
and try to relax the precondition on the automata of that class.
For example, if f(x) ≤ ẋ ≤ g(x) and f(x) and g(x) intersect
only in finite number of points, what are the other sufficient con-
ditions that make it possible to use the same method to achieve
a decision procedure.

ACKNOWLEDGMENT

The author would like to thank Prof. Mahesh Viswanathan
for his great discussions and comments on the subject of this
paper.

REFERENCES

[1] Martin Aigner and Günter M Ziegler. Proofs from THE BOOK. Springer-
Verlag, 4 edition, 2010.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[3] T.A. Henzinger, Pei-Hsin Ho, and H. Wong-Toi. Algorithmic analysis
of nonlinear hybrid systems. Automatic Control, IEEE Transactions on,
43(4):540 –554, apr 1998.

[4] Thomas A. Henzinger. The theory of hybrid automata. pages 278–292.
IEEE Computer Society Press, 1996.

[5] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? In Journal of Computer and
System Sciences, pages 373–382. ACM Press, 1995.

[6] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorith-
mic Point of View. Springer Publishing Company, Incorporated, 1 edition,
2008.

[7] Pavithra Prabhakar, Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh
Viswanathan. Hybrid automata based cegar for hybrid systems. Under
Submission, 2012.

	Introduction
	Preliminaries
	From to
	From Solvable Hybrid Automata to TA
	Fourier-Motzkin variable elimination method

	From IARHA to TA
	From Initialized SARHA to TA
	Decidability for Timed Automata

	Conclusion

