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1. Introduction

In general, given a network of systems modeled as a directed graph, graphs fibra-
tion provides a way to understand when nodes on the network undergo synchronized
behavior. The goal of this paper is to make this intuition more formal in the case
of a network of hybrid systems by adapting a result from the paper Networks of
Hybrid Systems from the language of category theory to hybrid automata. The
structure of the paper will be to introduce graph fibrations and a few of their prop-
erties, define a hybrid networks and their semantics and finally state and show the
final result.

2. Graph Fibrations

In this section, we’ll introduce graph fibrations, the main tool used in this paper.
The intuition which we would like to formalize is that given a graph fibration from
a source network onto a target network with a strictly smaller number of nodes,
we’ll be able to choose starting states so that nodes in the source network un-
dergo synchronized behavior. Concisely, proper graph fibrations yield synchronous
behavior .

Definition 1. A graph fibration is a graph homomorphism � : G̃ ! G which
satisfies the property that for any vertex ṽ 2 G̃ and for any edge e 2 G with
t(e) = �(v) there is a unique edge ẽ 2 G̃ such that �(ẽ) = e and t(ẽ) = ṽ.

In other words, we’re able to uniquely lift edges from the target graph to the
source graph via a graph fibration.

Example 2. The graph homomorphism defined by sending the following three
vertices to a single vertex is a graph fibration. In this case, it’s easy to check the
unique edge lifting property.

One of the key properties of graph fibrations is that they preserve the local
incoming edge structure between graphs. Although this will be used in the main
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result, it is generally useful criteria for whether a graph may admit a graph fibration
or not.

Lemma 3. If � : G̃ ! G is a fibration then for each ṽ 2 G̃ then � provides a
bijection between incoming edges of ṽ and incoming edges of �(ṽ).

Proof. For any vertex ṽ 2 G̃ and any edge ẽ 2 G with t(ẽ) = ṽ, we have t(�(ẽ)) =
�(v). Since ẽ is uniquely determined by the lifting property � is an injective map
from edges ending at ṽ to edges ending at �(ṽ). Since we can also lift any edge e

ending at �(ṽ) to one ending at ṽ, � is also surjective. ⇤

To make this more concise, we’ll introduce the notation I(v) to mean the set of
incoming neighbors of v. In this notation, the lemma just says I(ṽ) and I(�(ṽ))
are in one-to-one correspondence.

Finally, before moving onto hybrid networks, one last interesting property of
graph fibrations which will further “justify” (I mean in the sense that, our main
concern is already finding proper graph fibrations so this is only a tangential re-
mark.) us to formulate the result only for surjective graph fibrations is the following

Lemma 4. If � : G̃ ! G is a fibration with G̃ nonempty and G strongly-connected
then � is surjective.

Proof. Since G̃ is nonempty, there exists ṽ 2 G̃. Let v = �(ṽ). For any w 2 G,
there exists a path from v to w and a path from w to v. Each of these paths lifts
edge-wise to paths in G̃ projecting to the paths in G. The vertices along the lifted
paths cover the vertices in original paths. In particular, w is covered. ⇤

Intuitively, this this tells us a graph fibration mapping onto a strongly-connected
component covers the whole component and because the strongly-connected com-
ponents form an acyclic graph there can be no “feedback” behavior between systems
is different components of the network.

3. Hybrid Networks

In this section we introduce hybrid networks. The semantics of a hybrid network
will be defined by indirectly by introducing an associated, ordinary hybrid system.

Definition 5. A hybrid network consists of

• A directed graph G.
• An assignment Av = (Xv, Qv,⇥v, Av, Dv, Tv) of hybrid automata to each

vertex v 2 G with the modification that the continuous dynamics of Av is
allowed to depend on the state Qw of Aw for each incoming neighbor w of
v.

To a hybrid network (G,Av) we associate an ordinary hybrid automata G|| defined
by

• The variables are X|| :=
`

v2G Xv.
• The state space is Q|| :=

Q
v2G Qv.

• The start states are ⇥|| :=
Q

v2G ⇥v.
• The actions are A|| :=

S
v2G Av.

• For x, y 2 Q||, a 2 A|| we have x

a�! y iff for each v 2 G either (1) a 2 Av

and xdXv
a�! ydXv or (2) a 62 Av and xdXv = ydXv.
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• Trajectories are solutions to the differential equations (now without param-
eters).

4. Main Result

Now that we have defined graph fibrations and hybrid networks, we introduce
and prove the main result.

Theorem 6. Given hybrid networks (G̃, Ãv) and (G,Av) and a surjective graph
fibration � : G̃ ! G such that Ã ˜v = A�(ṽ), there exists a forward simulation of G||

into G̃|| such that under any execution of G|| ending at state q, there is a related
execution in G̃|| ending at q̃ such that for each ṽ 2 G̃ with q̃ṽ = q�(ṽ).

Proof. Let R be the relation such that the state q in G|| is related to the state q̃ in
G̃|| where q̃ṽ = q�(ṽ).

It’s clear that start states in G|| are related to the start states in G̃||.
We now check that transitions in G|| are related to transitions in G̃||. Let q a�! p

be a transition in G|| and let q̃, p̃ be the states in G̃|| related to q, p respectively. For
each v 2 G and each ṽ 2 �

�1(v) we have either (1) if a 2 Aṽ then since qv
a�! pv

and Ã ˜v = A�(ṽ) we have q̃ṽ
a�! p̃ṽ. (2) if a 62 Aṽ then since qv = pv and Ã ˜v = A�(ṽ)

we have q̃ṽ = p̃ṽ. Thus, q̃ a�! p̃ in G̃||.
We now check that trajectories in G|| are related to trajectories in G̃||. To see

this, let q be a state in G|| and q̃ be the related state in G̃||. From lemma 3, we
have that for any v 2 G and any ṽ 2 �

�1(v), the dependence of the continuous
dynamics of Ãṽ on the neighboring states Ãw̃ for each w̃ 2 I(ṽ) is the same as the
dependence of Av on Aw for each w 2 I(v). Since Ã ˜v = A�(ṽ) their ODEs are
same and since q̃ṽ = qv and for each w̃ 2 I(ṽ), q̃w̃ = q�(w̃) the initial conditions are
the same. This ensures Av and Ãṽ evolve identically which implies the final state
of the trajectory in G|| is related to the final state of the trajectory in G̃||. ⇤

This formalizes the intuition that proper graph fibrations yield synchronous be-
havior. As long as we can find nodes in the source network above a single base node
in the target network, we’re able to lift an execution in a way where the nodes will
stay in the same state the entire time.

5. Closing Thoughts

Although this is a simple result, a couple questions follow naturally from this.
First, is there an efficient way to find graph fibrations in light of lemma 3 and 4?
Second, the correspondence between synchronized behavior and graph fibrations
is not complete. That is, if there is some kind of synchronized behavior can we
encode it as a graph fibration? I haven’t yet given too much thought to either of
these questions. While both answers may turn out to have a quick no, they may
be interesting considerations.
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