
Stabilizing Robotics
Programming
Language
Adam Zimmerman

Overview

• Overview of the StarL Framework

• Distributed Path Planning (DPP) Algorithm

• Application using DPP

• DPP Properties and Verification

StarL Framework

• Collection of software functions for
controlling distributed robotic systems

• API for high level application programming

• Functions have well defined properties

• Platform/robot independent

Functionality Provided

• Reliable message passing

• Message loss detection

• Motion controllers

• Built-in algorithms:
• Geocast

• Leader election

• Mutual exclusion

• Synchronization

• Robust, tolerating failures

Assume-Guaranteed Behavior

• All functions have well defined behavior
• “Leader election function will elect a leader within 5 rounds or

notify all processors of failure”

• Predictable behavior lets us guarantee the
entire system

LeaderElect() stabilizes in T1

TaskAlloc() stabilizes in T2

once leader is elected

TaskAlloc() stabilizes in T1 + T2

Implementation

• Implemented in Java for Google’s Android
smartphone OS

• iRobot Create chassis

• IR Camera system for
localization

StarL Simulator

• Any StarL application can be simulated

• Debugging and scalability tests

• Faster and easier than robots

Distributed Path Planning

• Algorithm for a collection of robots to compute safe paths to a
set of destinations.

• Planar graph 𝐺 = (𝑉, 𝐸) encodes paths and destinations
available.

• A subset 𝑇 ⊆ 𝐸 are target edges

Distributed Path Planning

• One robot acts as a central coordinator and distributes
assignments to each robot
• Assignment = sequence of points in 𝑉

• At least one edge from 𝑇 per assignment

• Each assignment has maximum length 𝐻

• Coordinator maintains a reach tube for each robot

• An over-approximation of a robot’s position in the plane

• Each new assignment must be disjoint from all other reach tubes

• Assignments may be empty

• Robot remains stationary and requests again later

Distributed Path Planning

Request

Request Try again later

Assignment

B

A

Deadlocks

• Condition in which no safe assignments exist and the
execution has not completed.

• Formally: An execution of DPP with 𝐸 arranged such
that for each edge 𝑒 ∈ 𝑇 there exist at least two robots
within 𝑅 of 𝑒 will always deadlock.

• If an execution never deadlocks, the image is fully
drawn.

A
B

Collaborative Painting

• 𝑇 comes from a vector image

• Extra edges in 𝐸 are generated as needed
• Probabilistic roadmap path planning

• Output image is recorded using light painting
• Smartphone screens illuminate when traversing 𝑇

Simulator Example

Properties of DPP

• Safety: No two robots may be within a
safety bound 𝑟𝑠 of each other.

• Progress: The drawing should be
completed as much as possible without
violating safety.

DPP Progress

• Formally: At the time of a request from robot 𝑖, if there exists a safe
edge 𝑒 ∈ 𝐹𝐸 and there exists a safe path between 𝑋𝑖 and 𝑒, then 𝑊𝑖
will be nonempty.

• The opposite of the deadlock condition

• What if this doesn’t hold?

• Deadlock!

• Can a deadlock be predicted or avoided?

Starting Condition Analysis

• Progress guarantee: Can a deadlock be predicted?
• Can predict only if all sources of indeterminism are removed and

G is completable

• Message losses and reception order

• Assignment calculation must be deterministic

• Starting locations must be known

• Special cases exist

• Single robot executions never deadlock

• Some graphs are uncompletable

Starting Condition Analysis

• Uncompletable graphs - special cases of G

• A graph G which contains no cycles, 𝑛 terminal vertices, 𝑛
participating robots, and 𝑇 = 𝐸 is uncompletable.

• Other classes of uncompletable graphs are likely to exist

Starting Condition Analysis

• In reality - collaborative painting implementation:

• Deadlocks are unpredictable

• Message losses and reception order are unknowable

• Assignments have nondeterministic components

• Deadlocks are detectable and resolvable

Safety Analysis

• Assumptions used to show safety

• Assume messages are eventually delivered (no loss)

• When moving from 𝑋𝑖 to 𝑋𝑗 at velocity 𝑣, a robot is never farther

than 𝑟(𝑣) from the straight line 𝑋𝑖𝑋𝑗

• Ignore acceleration

• Definition

• 𝑈𝑛𝑠𝑎𝑓𝑒 = 𝑅𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒 𝑋𝑖, 𝑅 + 𝑅𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒 𝑊𝑖 , 𝑅𝑖

• 𝑅 > 𝑟𝑠

• 𝑟𝑠 > 𝑟 𝑣𝑚𝑎𝑥

Safety Analysis

• Robots will always be separated by distance 𝑟𝑠

• Proof sketch:

• Robots start with minimal separation of 𝑟𝑠

• Eventually some robot 𝑖 gets the first assignment 𝑊𝑖

• Traveling at 𝑣𝑚𝑎𝑥, 𝑖 is within 𝑟𝑠 of 𝑊𝑖 while moving

• 𝑊𝑖 is disjoint from 𝑈𝑛𝑠𝑎𝑓𝑒, making the minimum separation
distance 𝑅 > 𝑟𝑠

• Every consecutive assignment will be disjoint from 𝑈𝑛𝑠𝑎𝑓𝑒

• Empty assignments are disjoint from 𝑈𝑛𝑠𝑎𝑓𝑒

• Holds even if messages are lost!

• A lost assignment is the same as receiving an empty assignment.

DPP Properties

• Safety – Safe even with message losses

• Progress – Progress condition identified

• 𝐻 and 𝑛 can be tuned for a specific image or environment size to
maximize completion

