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Overview 

• Overview of the StarL Framework 

• Distributed Path Planning (DPP) Algorithm 

• Application using DPP 

• DPP Properties and Verification 



StarL Framework 

• Collection of software functions for 
controlling distributed robotic systems 

 

• API for high level application programming 

 

• Functions have well defined properties 

 

• Platform/robot independent 



Functionality Provided 

• Reliable message passing 

• Message loss detection 

• Motion controllers 

• Built-in algorithms: 
• Geocast 

• Leader election 

• Mutual exclusion 

• Synchronization 
 

• Robust, tolerating failures 

 



Assume-Guaranteed Behavior 

• All functions have well defined behavior 
• “Leader election function will elect a leader within 5 rounds or 

notify all processors of failure” 

 

• Predictable behavior lets us guarantee the 
entire system 

LeaderElect() stabilizes in T1 

TaskAlloc() stabilizes in T2 

once leader is elected 

TaskAlloc() stabilizes in T1 + T2 



Implementation 

• Implemented in Java for Google’s Android 
smartphone OS 
 

• iRobot Create chassis 
 

• IR Camera system for 
localization 
 



StarL Simulator 

• Any StarL application can be simulated 

• Debugging and scalability tests 

• Faster and easier than robots 



Distributed Path Planning 

• Algorithm for a collection of robots to compute safe paths to a 
set of destinations. 

• Planar graph 𝐺 = (𝑉, 𝐸) encodes paths and destinations 
available.  

• A subset 𝑇 ⊆ 𝐸 are target edges 



Distributed Path Planning 

• One robot acts as a central coordinator and distributes 
assignments to each robot 
• Assignment = sequence of points in 𝑉 

• At least one edge from 𝑇 per assignment 

• Each assignment has maximum length 𝐻 

• Coordinator maintains a reach tube for each robot 

• An over-approximation of a robot’s position in the plane 

• Each new assignment must be disjoint from all other reach tubes 

• Assignments may be empty 

• Robot remains stationary and requests again later 



Distributed Path Planning 

*Request* 

*Request* Try again later 

Assignment 

B 

A 



Deadlocks 

• Condition in which no safe assignments exist and the 
execution has not completed. 

• Formally: An execution of DPP with 𝐸 arranged such 
that for each edge 𝑒 ∈ 𝑇 there exist at least two robots 
within 𝑅 of 𝑒 will always deadlock. 

 

 

 

 

 

• If an execution never deadlocks, the image is fully 
drawn. 

A 
B 



Collaborative Painting 

• 𝑇 comes from a vector image 

• Extra edges in 𝐸 are generated as needed 
• Probabilistic roadmap path planning 

• Output image is recorded using light painting 
• Smartphone screens illuminate when traversing 𝑇 



Simulator Example 



 



 



 



Properties of DPP 

• Safety: No two robots may be within a 
safety bound 𝑟𝑠 of each other. 

 

• Progress: The drawing should be 
completed as much as possible without 
violating safety. 



DPP Progress 

• Formally: At the time of a request from robot 𝑖, if there exists a safe 
edge 𝑒 ∈ 𝐹𝐸 and there exists a safe path between 𝑋𝑖 and 𝑒, then 𝑊𝑖 
will be nonempty. 

• The opposite of the deadlock condition 

 

• What if this doesn’t hold? 

• Deadlock! 

 

• Can a deadlock be predicted or avoided? 



Starting Condition Analysis 

• Progress guarantee: Can a deadlock be predicted? 
• Can predict only if all sources of indeterminism are removed and 

G is completable 

• Message losses and reception order 

• Assignment calculation must be deterministic 

• Starting locations must be known 

• Special cases exist 

• Single robot executions never deadlock 

• Some graphs are uncompletable 

 



Starting Condition Analysis 

• Uncompletable graphs - special cases of G 

• A graph G which contains no cycles, 𝑛 terminal vertices, 𝑛 
participating robots, and 𝑇 = 𝐸 is uncompletable. 

 

 

 

 

 

 

• Other classes of uncompletable graphs are likely to exist 



Starting Condition Analysis 

• In reality - collaborative painting implementation: 

• Deadlocks are unpredictable 

• Message losses and reception order are unknowable 

• Assignments have nondeterministic components 

• Deadlocks are detectable and resolvable 



Safety Analysis 

• Assumptions used to show safety 

• Assume messages are eventually delivered (no loss) 

• When moving from 𝑋𝑖 to 𝑋𝑗 at velocity 𝑣, a robot is never farther 

than 𝑟(𝑣) from the straight line 𝑋𝑖𝑋𝑗 

• Ignore acceleration 

 

• Definition 

• 𝑈𝑛𝑠𝑎𝑓𝑒 =   𝑅𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒 𝑋𝑖, 𝑅 + 𝑅𝑒𝑎𝑐ℎ𝑇𝑢𝑏𝑒 𝑊𝑖 , 𝑅𝑖  

• 𝑅 > 𝑟𝑠 

• 𝑟𝑠 > 𝑟 𝑣𝑚𝑎𝑥  



Safety Analysis 

• Robots will always be separated by distance 𝑟𝑠 

• Proof sketch: 

• Robots start with minimal separation of 𝑟𝑠 

• Eventually some robot 𝑖 gets the first assignment 𝑊𝑖 

• Traveling at 𝑣𝑚𝑎𝑥, 𝑖 is within 𝑟𝑠 of 𝑊𝑖  while moving 

• 𝑊𝑖  is disjoint from 𝑈𝑛𝑠𝑎𝑓𝑒, making the minimum separation 
distance 𝑅 > 𝑟𝑠 

• Every consecutive assignment will be disjoint from 𝑈𝑛𝑠𝑎𝑓𝑒 

• Empty assignments are disjoint from 𝑈𝑛𝑠𝑎𝑓𝑒 

 

• Holds even if messages are lost! 

• A lost assignment is the same as receiving an empty assignment. 

 



DPP Properties 

• Safety – Safe even with message losses 

• Progress – Progress condition identified 

• 𝐻 and 𝑛 can be tuned for a specific image or environment size to 
maximize completion 


