Stabilizing Robotics Programming Language

Adam Zimmerman

Overview

- Overview of the StarL Framework
- Distributed Path Planning (DPP) Algorithm
- Application using DPP
- DPP Properties and Verification

StarL Framework

 Collection of software functions for controlling distributed robotic systems

• API for high level application programming

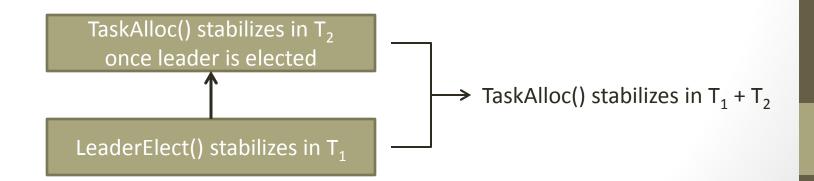
- Functions have well defined properties
- Platform/robot independent

Functionality Provided

- Reliable message passing
- Message loss detection
- Motion controllers
- Built-in algorithms:
 - Geocast
 - Leader election
 - Mutual exclusion
 - Synchronization
- Robust, tolerating failures

Assume-Guaranteed Behavior

- All functions have well defined behavior
 - "Leader election function will elect a leader within 5 rounds or notify all processors of failure"
- Predictable behavior lets us guarantee the entire system

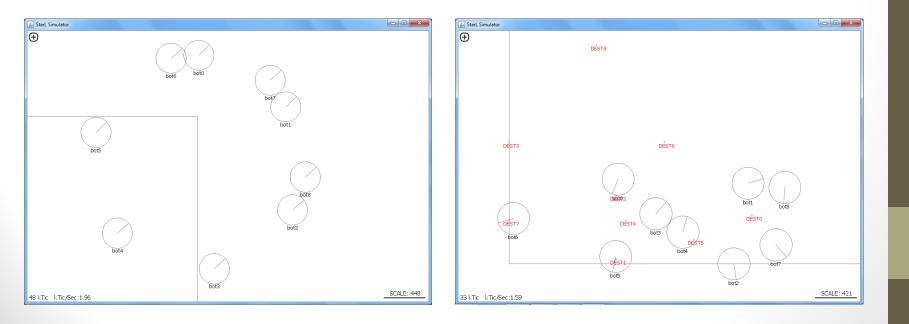


Implementation

- Implemented in Java for Google's Android smartphone OS
- iRobot Create chassis
- IR Camera system for localization

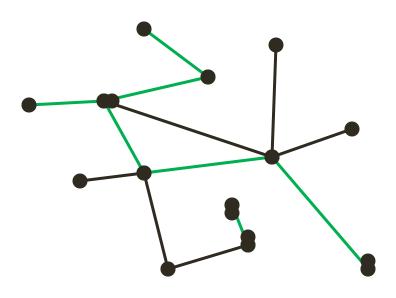
StarL Simulator

- Any StarL application can be simulated
- Debugging and scalability tests
- Faster and easier than robots



Distributed Path Planning

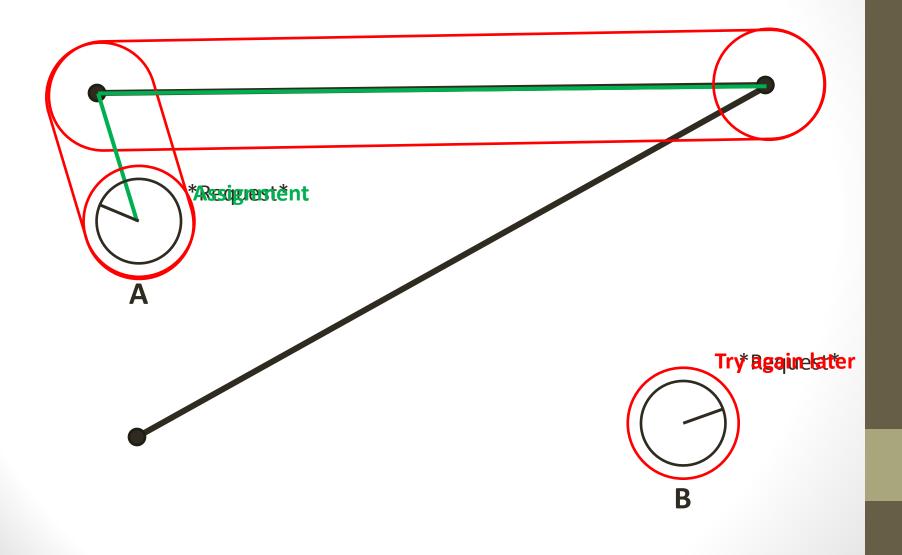
- Algorithm for a collection of robots to compute safe paths to a set of destinations.
- Planar graph G = (V, E) encodes paths and destinations available.
- A subset $T \subseteq E$ are *target edges*



Distributed Path Planning

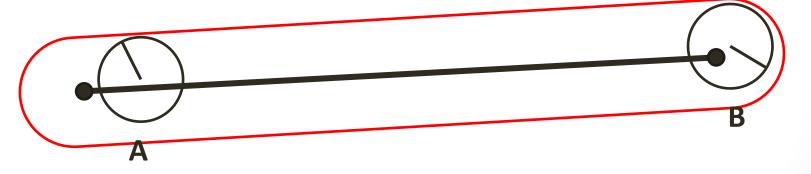
- One robot acts as a *central coordinator* and distributes assignments to each robot
 - Assignment = sequence of points in V
 - At least one edge from *T* per assignment
 - Each assignment has maximum length *H*
- Coordinator maintains a reach tube for each robot
 - An over-approximation of a robot's position in the plane
 - Each new assignment must be disjoint from all other reach tubes
- Assignments may be empty
 - Robot remains stationary and requests again later

Distributed Path Planning



Deadlocks

- Condition in which no safe assignments exist and the execution has not completed.
- Formally: An execution of DPP with E arranged such that for each edge $e \in T$ there exist at least two robots within R of e will always deadlock.

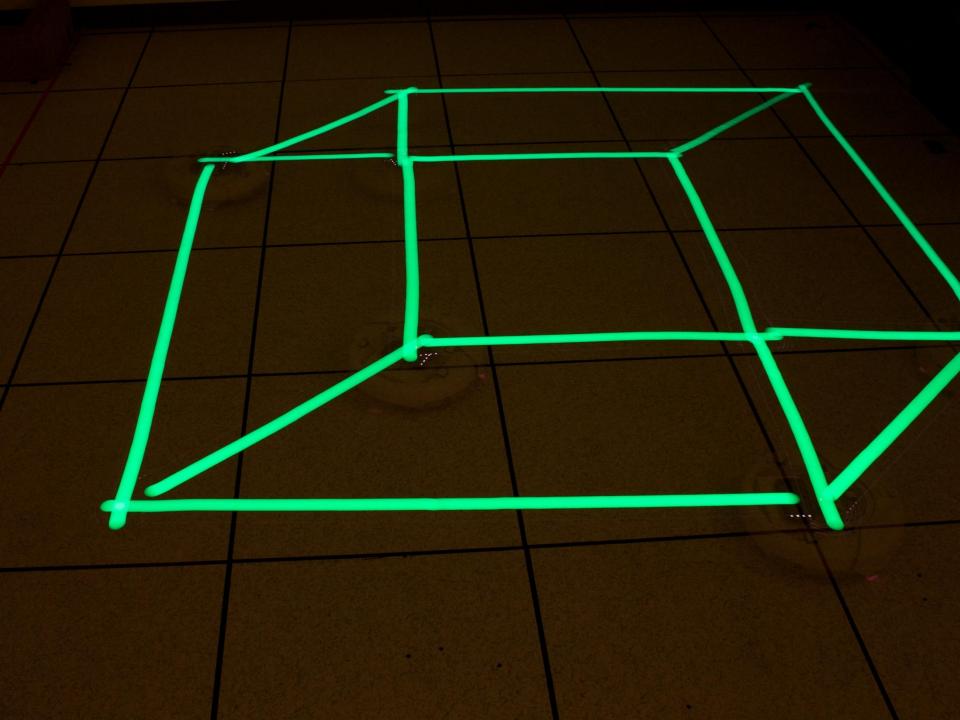


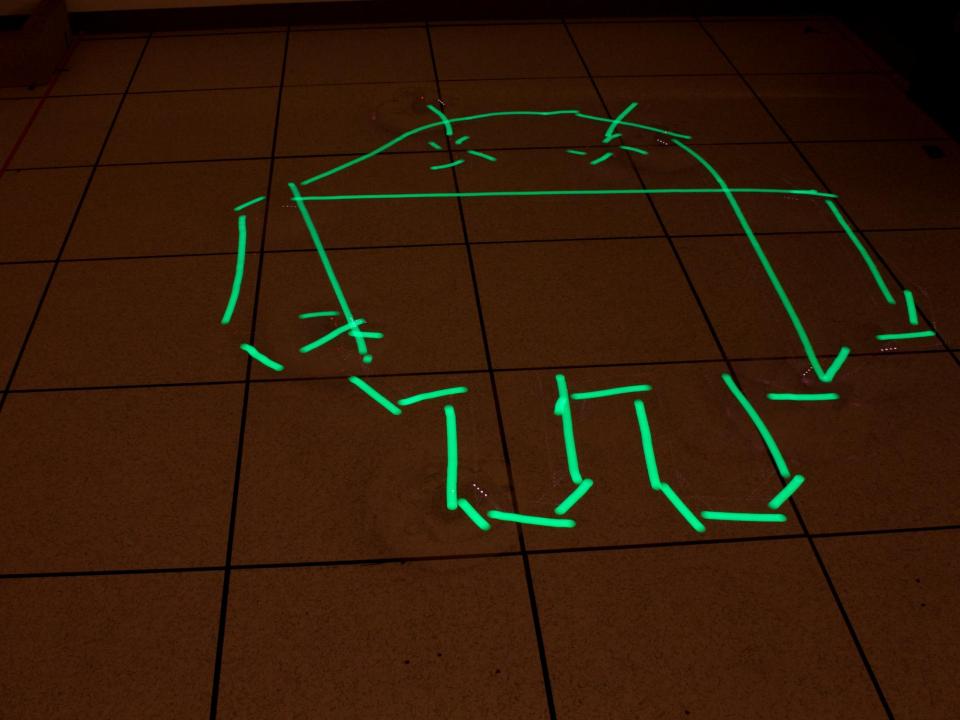
• If an execution never deadlocks, the image is fully drawn.

Collaborative Painting

- T comes from a vector image
- Extra edges in *E* are generated as needed
 - Probabilistic roadmap path planning
- Output image is recorded using light painting
 - Smartphone screens illuminate when traversing T

Simulator Example





Properties of DPP

• Safety: No two robots may be within a safety bound r_s of each other.

 Progress: The drawing should be completed as much as possible without violating safety.

DPP Progress

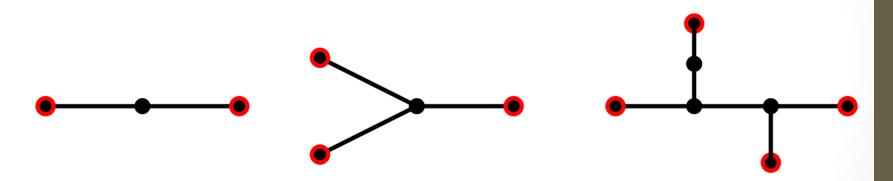
- Formally: At the time of a request from robot *i*, if there exists a safe edge *e* ∈ *FE* and there exists a safe path between X_i and *e*, then W_i will be nonempty.
 - The opposite of the deadlock condition
- What if this doesn't hold?
 - Deadlock!
- Can a deadlock be predicted or avoided?

Starting Condition Analysis

- Progress guarantee: Can a deadlock be predicted?
 - Can predict only if all sources of indeterminism are removed and G is *completable*
 - Message losses and reception order
 - Assignment calculation must be deterministic
 - Starting locations must be known
 - Special cases exist
 - Single robot executions never deadlock
 - Some graphs are uncompletable

Starting Condition Analysis

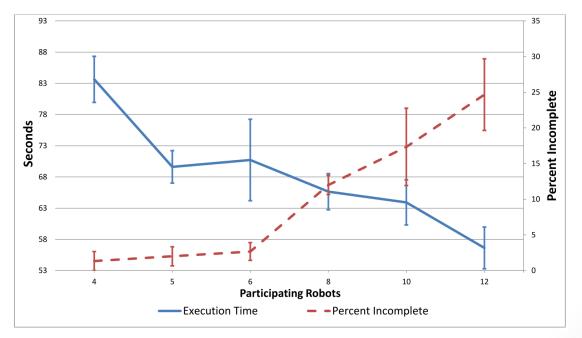
- Uncompletable graphs special cases of G
- A graph G which contains no cycles, n terminal vertices, n participating robots, and T = E is uncompletable.



• Other classes of uncompletable graphs are likely to exist

Starting Condition Analysis

- In reality collaborative painting implementation:
 - Deadlocks are unpredictable
 - Message losses and reception order are unknowable
 - Assignments have nondeterministic components
- Deadlocks are detectable and resolvable



Safety Analysis

- Assumptions used to show safety
 - Assume messages are eventually delivered (no loss)
 - When moving from X_i to X_j at velocity v, a robot is never farther than r(v) from the straight line $\overline{X_i X_j}$
 - Ignore acceleration
- Definition
 - $Unsafe = \bigcup_{i} ReachTube(X_i, R) + ReachTube(W_i, R)$
 - $R > r_s$
 - $r_s > r(v_{max})$

Safety Analysis

- Robots will always be separated by distance r_s
- Proof sketch:
 - Robots start with minimal separation of r_s
 - Eventually some robot i gets the first assignment W_i
 - Traveling at v_{max} , *i* is within r_s of W_i while moving
 - W_i is disjoint from Unsafe, making the minimum separation distance $R > r_s$
 - Every consecutive assignment will be disjoint from *Unsafe*
 - Empty assignments are disjoint from *Unsafe*
- Holds even if messages are lost!
 - A lost assignment is the same as receiving an empty assignment.

DPP Properties

- Safety Safe even with message losses
- **Progress –** Progress condition identified
 - *H* and *n* can be tuned for a specific image or environment size to maximize completion

