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Abstract—This paper presents the StarL programming
paradigm, its software embodiment and applications. StarL
is designed to simplify the process of writing and rea-
soning about reliable distributed robotics applications. It
provides a collection of building block functions with
well-defined interfaces and precise guarantees. Composing
these functions, it is possible to write more sophisticated
functions and applications which amenable to assume-
guarantee style reasoning. StarL is platform independent
and can be used in conjunction with any mobile robotic
system and communication channel. Design choices made
in the current Android/Java based open source implemen-
tation are discussed along with three exemplar applica-
tions: distributed search, geocast, and distributed painting.
It is illustrated how application-level safety guarantees can
be obtained from the properties of the building-blocks
and certain environmental assumptions. Experimental re-
sults establish the feasibility of the StarL approach and
show that the performance of an application scales in the
expected manner with increasing number of participating
robots.

I. INTRODUCTION

The challenge of reliably programming distributed
systems becomes aggrevated when the computers in-
teract through multiple physical channels. Consider
programming a distributed search application for a
swarm. The robots should collaboratively cover a col-
lection of rooms in a building in an attempt to find
targets. For this relatively simple task, robots need to
exchange messages over a wireless network about the
rooms that have been covered and somehow decide
the assignment of uncovered rooms to robots. They
also need to plan their paths avoiding each other and
obstacles in a shared physical space. The interaction
of the subroutines handling each of these different
subtasks can quickly overwhelm any debugging or
verification effort.

Lessons from software engineering provide a simple
recipe for managing this problems: abstraction and
modularity. A complex (software) system is built by
assembling simpler building-blocks or modules with
well-defined interfaces and properties. Abstractions of a
module hide its implementation details and provide a
simpler description of its relevant properties. Thus, in-
dividual building blocks can be unit-tested or verified

against their stated properties independently. System-
level properties can be derived from the properties of
the units using assume-guarantee style reasoning [13].
For maintainability, a unit can replaced by another
unit without perturbing the overall system, as long as
the latter conforms same interface and the abstraction
provided by the former. Finally, modular design leads
to reuse. Software development environments like Mi-
crosoft’s .NET [3] provide a support modular applica-
tion development by providing a common platform on
which developers can build applications with shared
infrastructure.

Currently there are no frameworks or tools support-
ing analogous modular design, implementation, and
verification of distributed robotic systems. Several re-
search laboratories and companies (for example, Kiva
Systems [2]) around the globe focus on developing
particular distributed algorithms and applications. For
example, there is a large body of work on formation
control [8], [16], [14], coverage [7], [15], searching,
payload delivery, and distributed construction, among
others (further discussion of this is in Section VI). In
implementing these algorithms, each group uses its
own specific, home-grown and typically proprietary
hardware and software architecture to implement the
algorithms, with limited scope for reuse and modular
reasoning.

We addresses this need by introducing Stabilizing
Robotics Language (StarL) [18] [19]. StarL is an open
source, modular programming paradigm for devel-
oping distributed robotics applications. It provides
specifications and implementations of a number of
building blocks including point-to-point communica-
tion, broadcast, leader election, distributed path plan-
ning, mutual exclusion, synchronization, and geocast.
Each of these building blocks have well-defined in-
terfaces and properties and they can be composed
to construct more sophisticated building blocks and
applications. Distributed robotic applications can be
rapidly prototyped and tested by taking advantage of
these building blocks and the StarL platform’s infras-
tructure. Furthermore, since the building blocks have
well-defined assume-guarantee style properties, it is
possible to reason about the properties of high-level



applications. The implementation of StarL is organized
in a stack of four layers and can be ported to different
robotic hardware by appropriately changing the lowest
layer. An example Java implementation for Android
[1] smartphone based robots is presented. StarL also
comes with its own discrete event simulator which can
simulate instances of StarL applications with hundreds
of participating robots.

We provide an overview of the architecture of StarL
in Section II. Then we illustrate application devel-
opment in StarL with three examples: Geocast, dis-
tributed search, and distributed painting (Section III).
The modularity and reuse advantage of StarL building
blocks become apparent in developing these applica-
tions. In Section IV we briefly show how (safety) prop-
erties of high-level applications can be derived from
the properties of the building blocks and certain en-
vironmental assumptions. A example multi-robot plat-
form with iRobot Create robots [5], Android phones,
and camera-based indoor positioning system on which
StarL has been used is discussed in Section V-A. In
Section V-B experiments with this robotic platform
demonstrate the feasibility of StarL and shows that the
task completion time of a typical application scales in
the expected manner with larger groups of robots.

II. OVERVIEW OF STARL

A. Design Hierarchy

The StarL is organized into a four layer stack (see
Figure 1). Each layer groups together functionalities
that serve similar purposes. Interaction between layers
happens through well-defined interfaces, allowing for
the implementation of any layer to be modified with-
out impacting others. The lowest layer provides basic
functions, while higher layers build on this to provide
more advanced capabilities.

The platform layer interfaces directly with robot
hardware and communication channels. This layer’s
purpose is to (a) send and receive messages over
the communication channels (Section II-B), (b) receive
or generate localization data (Section II-C), (c) issue
motion commands to the robot chassis (Section II-D),
and (d) record debug traces (Section II-F). To run StarL
on a robot system, the platform layer must be tailored
to interact with the system’s hardware. The platform
layer links the logic layer with the physical system
hardware.

The logic layer is built upon the platform layer. That
is, all logic layer functionality depends only on the
methods exposed by the platform layer’s interface. It
is responsible for message handling, including parsing
and validating received packets. Robot motion con-
trollers, communication protocols, such as the Simple

Figure 1. StarL Architecture

Acknowledgement Protocol (see Section II-B), are in-
cluded in this layer.

The interface layer provides a set of methods used
to pass data in and out of the logic layer. It is an orga-
nized collection of all underlying StarL functionality.
Through the interface layer, applications may access
each part of the framework. Only superficial behavior
is described in the interface layer. The interface layer
will, for example, track the robots participating in
an application’s execution. The interface layer also
maintains a log file which records all steps taken
by an application. This layer specifies the StarL API
and connects the underlying functionality to each API
method.

The top layer is the application layer. This includes
StarL building block functions (Section II-E) as well
as the user applications written using them. The ap-
plications access the logic layer methods through the
interface layer, which then uses the platform layer to
issue commands to hardware and read sensor data.

B. Communication
Messages in StarL are directed to a particular appli-

cations using an associated type ID. When sending a
message, a message type ID is attached to the outgoing
message. To receive messages with of a particular type,
a receiver must register itself as a message listener for
that type’s ID.

StarL uses a message acknowledgement protocol
called Simple Acknowledgement Protocol (SAP) to
increase communication reliability and detect failed
transmissions. SAP attaches a unique sequence number
to outgoing message packets. Upon receiving a packet,
a robot replies with an acknowledgement for the mes-
sage’s sequence number. If an acknowledgement is not
received by the sender within a time bound, the sender
retransmits with the same sequence number until an



acknowledgement is received or a retransmission limit
is reached. If the retransmission limit is reached the
message is reported lost to the application layer. All
received packets with duplicate sequence numbers are
acknowledged but not redelivered.

It is important to distinguish between packets and
messages. A message is contains data intended for
other robots, and a packet is an instance of that
message which is transmitted. Individual packets may
be lost, but replacement duplicate packets are re-
transmitted to improve the chances of message deliv-
ery.

C. Location
StarL contains data structures to hold location in-

formation for participating robots and waypoints in
the environment. These waypoints may be provided
by the localization component of the platform layer,
or generated in the application layer and stored in
the StarL localization data. Because the localization
data is available to all application threads through
the interface layer, it is possible for threads to share
locations using this structure.

D. Motion Control
The platform independent motion controller inter-

face takes a destination location and determines the
individual chassis motions necessary to reach the desti-
nation. The most basic motion controller implementing
this interface moves in a straight line to the goal, but
more advanced controllers may incorporate collision
avoidance and collaborative path planning. Because
all robot chassis will have different atomic motion
commands (for example, the iRobot create has com-
mands to turn left and right, while a quadcopter
has commands to increase or decrease blade pitch),
the inputs to the atomic motion command transmit-
ter in the platform layer are left undefined. For this
reason, the motion controller and motion command
transmitter are intended to be designed together. We
require the atomic motion controllers to satisfy the
following assumption: it states that a robot can move
from its current position Xi to a given waypoint w
while staying within bounded distance of the straight
line wXi.

Assumption II.1. Consider robot i at point Xi moving to
point w with velocity v. ∃r(v) such that i is never farther
than r(v) away from the straight line connecting Xi and
Xj .

E. Building Blocks
The application layer provides a wide collection of

building block functions which are useful for writing
applications for mobile robotic systems. Each function

provides some guarantees under some assumptions
about the lower layers. In what follows, we describe a
set of building blocks.

Leader Election: The leader election function selects a
leader from the set of participating agents. All agents
participating in an election will either elect the same
leader or no leader at all if the election fails.

Assumption II.2. (a) The set of participants is known to
all participants.

(b) For some constant δ > 0, all participants begin election
within δ-time of each other.

Proposition 1. (a) If no messages are lost, all agents
will elect the same leader.

(b) If any agent fails to receive any ballot messages
but receives at least one leader announcement
message, it will elect the announced leader.

(c) If insufficient ballots are received and no an-
nouncement messages are received, the algorithm
will return failure in bounded time.

Currently, one of the implementations of leader elec-
tion is based on randomized ballot creation and a
second implementation is based on a version of the
Bulley algorithm. Implementations of other election
algorithms could as well be used.

Mutual Exclusion: The mutual exclusion function
manages a set of permission tokens which are used
for controlling access to shared resources in distributed
applications. Each token is held by a single robot
at a given time and under additional assumptions
a requesting robot eventually obtains the requested
tokens. Under Assumption II.2, the mutual exclusion
function guarantees the following properties.

Proposition 2. (a) No two robots hold the same token
simultaneously.

(b) If a robot requests a token, no messages are lost
and no robot holds tokens indefinitely, then the
requesting robot will eventually receive the token.

(c) If no messages are lost, all robots know the identity
of the owner of each token.

Our implementation of mutual exclusion works as
follows: a requesting robot sends a message to the cur-
rent token holder. Upon receiving a request message,
the token holder adds the requestor to a queue. Upon
exiting the critical section, the token holder sends the
token to the first robot in the queue. The names of
any remaining robots in the queue are sent along
with the token transfer message. This allows the new
token holder to continue passing the token to other
robots requesting entry to the critical section. After the
token holder sends the token to a requestor, it sends a
broadcast message to all robots informing them of the



new token holder. If a non-token holding robot receives
a request message, it will forward that request on to
the proper token owner.

Barrier Synchronization: The synchronization primi-
tive enables all participating robot to start the execu-
tion of a function roughly at the same time. The point
in the code at which the robots synchronize is called a
barrier. Once a robot reaches a barrier it waits for all
the robots to reach the barrier before it continues with
the execution.

Proposition 3. There exists a platform dependent time
constat δ, such that if there are no message losses then
for a given barrier point all robots continue execution
from that point within δ time of each other.

Here δ is a parameter which depends on the round
trip delay and the worst case execution time of the
synchronization subroutine.

In our implementation, when a robot reaches a bar-
rier point it broadcasts a message containing the ID
of that barrier. The robot then periodically checks for
received synchronization broadcasts containing the ID
of the current barrier. Until a synchronization broad-
cast for the current barrier has been received from all
robots, the robot will not advance its execution. This
primitive is useful for ensuring that all robots begin
a procedure within bounded time of each other. For
example, synchronizing before electing a leader will
ensure that n−1 robots will not time out while waiting
for ballots because 1 robot has not yet begun leader
election.

F. StarL Simulator and Debugger

One of the tools included with the StarL framework
is a discrete event simulator which allows applications
to be tested without a physical robotic platform. The
simulator features a custom implementation of the
platform layer which directs motion, message, and
trace commands into a coordinating thread referred to
as the simulation engine. The simulator can execute an
arbitrary number of copies of a StarL application code
to run and interact simultaneously through simulated
messages and robotic platforms.

The StarL simulator allows a developer to run an
application under a broad range of conditions and with
any number of participating robots. Message delays,
message loss rate, clock skews and offsets, and physical
environment size are among the tunable simulation pa-
rameters. A visualizer displays the current position of
each agent and can be extended to display additional
application specific information (see Figure V-A).

On startup the simulator is provided the StarL
application to be simulated and a set of simulation
parameters. A thread pool is then created with each

simulated robot running on a separate thread. Each of
these threads may request to sleep for a certain length
of time during its execution. All StarL applications
share a similar design in which main thread routinely
sleeps. When this happens, the thread is halted and
the requested sleep duration is passed to a the simu-
lation engine. The simulation engine is responsible for
tracking each simulated robot’s current execution state
and the current simulated time. When all simulated
robots have requested to sleep, the engine will advance
simulated time until the next thread is scheduled to
be woken up. The engine will then resume all threads
scheduled to be woken at that time.

We have also developed a tool for debugging StarL
applications. The development platform writes trace or
log files to each smartphones local file system. These
files are automatically synchronized with a cloud stor-
age service, providing easy access to all traces files
organized by execution. An SMT-based tool described
in [12] analyzes these traces to automatically detect
violation of global predicates.

III. APPLICATIONS

In this section we sketch the implementation of four
StarL applications starting from a relatively simple
geocast to a sophisticated distributed search protocol.
While the safety properties of the applications hold in
spite of message losses, the following assumption is
used for obtaining the progress guarantees.

Assumption III.1. Every message that a robot attempts to
send is eventually delivered.

A. Geocast

Function: The Geocast(m,A) application is a StarL
building block for a robot to send a message m to
other robots in a geographical area A. For a message
m geocast at time t0 on a network of diameter D
and a platform specific time constant δ for the non-
blocking Geocast(m,A) function (see Subroutine 1), the
following properties hold:

Proposition 4. (a) (Exclusion) Any robot located out-
side A during the time interval [t0, t0+δD] will not
deliver m. No robot delivers m after t0 + δD.

(b) (Inclusion) Any robot located within A during the
time [t0, t0 + δD] will deliver m.

For a robot moving in or out of A during the geocast
period, the message may or may not be delivered.
The time constant δ is an upper-bound on the sum of
the message round trip time (RTT) and the worst-case
execution time of the Subroutine.



Implementation: To geocast a message m to an area
A, a robot broadcasts a special message Geo(m,A).
The pseudocode implementing the delivery of geocast
messages is shown in Subroutine 1. A robot upon
receiving Geo(m,A) for the first time, rebroadcasts it
and if it is located within A then delivers it.

Subroutine 1: Receive Geo(m,A)

1 if Relayed ∩m = ∅ then
2 StarL.Broadcast(Geo(m,A));
3 if Xi ∈ A then
4 StarL.DeliverToSelf(m);
5 end
6 Relayed = Relayed ∪m;
7 end

B. Distributed Path Planning
Function: The distributed path planning (DPP) build-

ing block consists of a RequestPath-ComputePath func-
tion pair. It enables a collection of robots to compute
safe paths to a set of destinations. Consider a planar
graph G = (V,E) with a subset T ⊆ E of target edges.
The requirement is for the robots to collaboratively
traverse (cover) every traget edge in T , while traveling
along E and avoiding collisions.

To compactly state the properties of DPP, we first
introduce some terms and notations. Xi is the current
position of robot i. A waypoint sequence for robot i,
Wi = {wi1, wi2, ..., wik} is a path in G. ReachTube(Wi,R)
is the subset of the 2D plane such that for every point
in it, there is some point on Wi that is at most R
distance away. Let FE(t) denote the subset of free edges,
that is, the set of target edges T which have never been
assigned to any robot upto time t. Initially, FE(0) = T .
A coordinator robot is elected (see Section II-E) and
upon receiving a request from a participating robot it
computes a (possibly empty) waypoint sequence for it
in a manner that achieves the following properties.

Proposition 5. (a) (Safety) No two robots following
the assigned waypoint ever collide.

(b) (Progress) At the time of a request from robot i,
if there exists a free edge e ∈ FE(t) such that
there exists a safe path between Xi and e, then the
computed Wi will contain at least one free edge.

The computed waypoint sequence Wi is empty only
if there are no safe paths from Xi to any of the free
edges.

Implementation: ComputePath uses an elected coor-
dinator robot for target edge assignments and for
maintaining safe separations. For safety, the coor-
dinator must make assignments such that no two

robots are ever closer than a safety distance rs. To
this end it maintains a set, called Unsafe , which is
an overapproximation of all the points in the plane
where the robots could be. Initially, Unsafe(t0) =
∪i∈IDReachTube(Xi(t0),R), that is, the union of the
R-discs around each robot’s initial location. When a
robot i requests a new assignment, after completing
waypoint sequence Wi, the coordinator first removes
ReachTube(Wi,R) and adds ReachTube(Xi,R) to Unsafe .
Then, if a safe path W ′i can be found to a free edge,
it adds ReachTube(W′i ,R) to Unsafe . This together with
Assumption II.1 and an appropriately large choice of
R guarantees the following invariant:

Proposition 6. For any two robots i, j, Unsafe always
contains ReachTube(Xi,R), ReachTube(Xj,R) and ||Xi−
Xj || ≥ rs.

The actual choice of the path W ′i is con-
trolled by a parameter H which limits its maxi-
mum length (more on this below). The subroutine
ComputePath(FE,E,Unsafe,Xi) computes a new (possi-
bly empty ⊥) assignment Wi based on the current free
edges, available edges, unsafe region, and requesting
robot position such that
(a) ReachTube(Wi,R) is disjoint with Unsafe
(b) There is at least one j in the sequence such that
{wij , wi(j+1)} is an edge in FE

(c) The length of Wi is at most H1

We state these properties below for future use:

Lemma 7. When each assignment Wi is made,
ReachTube(Wi,R) is disjoint from Unsafe.

A requesting robot receiving an empty assign-
ment remains static (within ReachTube(Xi,R)) and re-
quests again after a waiting period. Upon receiving a
nonempty request Wi, a robot traverses the path and
periodically sends Clear(wik ,wik+1 ) messages to the
coordinator. This makes the coordinator safely remove
ReachTube({wik,wik+1},R) from Unsafe set, and thus
frees up more space for safe paths.

The ComputePath subroutine presented in 3 takes
the following steps to compute such an assignment:
first, it is determined if a safe path Tv exists in E
between Xi and each safe vertex v in the vertices of
FE. If no path is found, v is assumed to be currently
unreachable by a safe path and is removed from con-
sideration. Among the feasible vertices in FE to which
safe paths exist, one is chosen and Dv is assigned

1One case which ComputePath must account for is the following:
∀e ∈ FE, |e| > H . By the above definition of ComputePath, no
assignment is admissible in this case. ComputePath may resolve this
by either breaking edges longer than H into segments of maximum
size H , or temporarily violating the maximum path length constraint
and assigning these long edges to robots.



Subroutine 2: Coordinator receives
RequestPath(Xi, i)

1 Unsafe =
Unsafe− ReachTube(Wi,R) + ReachTube({Xi},R);

2 if (termination condition met) then
3 return DONE;
4 else
5 Wi = ComputePath(FE,Unsafe,Xi);
6 FE = FE −Wi;
7 Unsafe = Unsafe+ ReachTube(Wi,R);
8 StarL.Send(i,Wi);
9 end

Subroutine 3: ComputePath(FE,E,Unsafe,Xi)

1 foreach v ∈ vertices(FE) do
2 if PathPlanner(E,Xi, v,Unsafe) 6= ⊥ then
3 Tv = PathPlanner(E,Xi, v,Unsafe);
4 end
5 end
6 if T = ⊥ then
7 return ⊥;
8 else
9 Dv = pick any v, concatenate Tv with the

largest (up to H − |Tv| length) nonempty
contiguous subgraph of FE starting at v;

10 return {Tv, Dv}
11 end

to be the largest safe contiguous subgraph of FE
reachable from v. The concatenation of Tv and Dv is
returned as the assignment Wi. Various heuristics may
be used in choosing a feasible v for optimizing different
performance metrics. For example, the length of target
edges present in an assignment could maximized for
minimizing the time spent traveling. Longer paths
also expand Unsafe , posing more constraints on future
assignments.

We remark that DPP is not deadlock free even when
there are free edges. Consider an edge in T that is
within R distance of two robots. Since the edge in-
tersects with Unsafe it cannot be assigned. However,
deadlocks are detectable and can be resolved using
symmetry-breaking strategies.

Subroutine 4: Coordinator receives
Clear(wi(j−1), wij)

1 Unsafe = Unsafe− ReachTube({wi(j−1),wij},R);

C. Distributed Search

Function: Distributed search uses a swarm of
camera-equipped robot to search for a target in a
collection of rooms. In our robotic platform described
in Section V-A, each smartphone uses its camera to
search for a brightly colored ball when passing through
each room. The rooms and hallways connecting them
define the set of edges of the graph G. A room is
searched when its target edge is traversed by a robot.
We assume that the number of robots and the topology
of G is such that a safe path always exists between any
pair of rooms. The key property of distributed search
is the following:

Proposition 8. All rooms are eventually searched.

Implementation: Distributed search is implemented
using DPP. The target edges for the rooms define the
set T of target edges in the graph. Until the target is
found, DPP’s coordinator will assign safe paths to the
searching robots that lead to unsearched rooms. Once
a robot searches a room unsuccessfully, it makes a new
path request. Once the target is found, the coordinator
will cease making new assignments and will instead
reply to requests with DONE .

Subroutine 5: Distributed search participant

1 repeat
2 StarL.Send(Γ, RequestPath(i,Xi));
3 wait until Receive(Assignment(Wi));
4 if Wi = ⊥ then
5 sleep(tr);
6 else if Wi = DONE then
7 return;
8 else
9 for j = 0 to len(Wi) do

10 StarL.GoTo(wij);
11 if foundTarget then
12 StarL.Broadcast(Found(wij));
13 end
14 StarL.Send(Γ, Clear(wi(j−1), wij));
15 end
16 end
17 until Wi = DONE;

D. Collaborative Painting

Function: This application enables a collection of
robots to paint a given picture. The picture is an
arbitrary collection of lines in the 2D plane. The lines
may intersect and come arbitrarily close. Robots must
not collide with each other as they travel, but once a
line has been painted, it may be safely traveled over



without disrupting the image. In our robotic platform,
the image is painted using light. The smartphone
screen attached to each robot is illuminated as that
robot travels along an edge in T painting and darkened
when the robot is traveling. In a dark room the re-
sulting light-painting is captured using long exposure
photography (see Figure V-A).

The provable properties of this application follow
from Propositions 5.

Subroutine 6: Painting participant

1 repeat
2 StarL.Send(Γ, RequestPath(i,Xi));
3 wait until Receive(Assignment(Wi));
4 if Wi = ⊥ then
5 sleep(tr);
6 else if Wi = DONE then
7 return;
8 else
9 for j = 0 to len(Wi) do

10 if line(Xi, wij) ∈ T then
11 EnablePaint();
12 else
13 DisablePaint();
14 end
15 StarL.GoTo(wij);
16 StarL.Send(Γ, Clear(wi(j−1), wij));
17 end
18 end
19 until Wi = DONE;

Implementation: The DPP is used with G being a
dense planar graph which contains the painting as a
subgraph. The set of target edges T is defined as the
lines of the image to be drawn. E includes a dense
graph to allow the ComputePath path planner to make
assignments bridging disjoint sections of the image.
Robots paint a line by traveling along its corresponding
edge in T . The termination condition used by the
coordinator for this application is FE = ⊥, indicating
that all edges in T from the drawing have either been
painted or assigned to a robot.

This application has been implemented on the
robotic system described in V-A In this implementa-
tion, the dense graph added to E is generated on-
the-fly by the path planner generating random points.
This technique is popularly known as probabilistic
roadmaps [10]. Performance results for this applica-
tion are discussed in Section V-B.

IV. PROPERTIES OF APPLICATIONS FROM BUILDING
BLOCKS

StarL enables one to formally reason about applica-
tion level safety and progress properties from the prop-
erties of the building blocks and certain environmental
assumptions. As an illustration, here we present a
proof sketch of the safety property of the distributed
path planning subroutine stated in Proposition 6.

Proposition 6. For any two robots i, j, Unsafe always
contains ReachTube(Xi,R), ReachTube(Xj,R) and ||Xi −
Xj || ≥ rs..

noindent Proof sketch. The proof is by induction on
the length of the execution of the system. Initially, no
assignments have been made and Unsafe consists of
reach tubes surrounding each robot’s starting position.
As the robots start with minimal separation of rs, the
property is satisfied.

Consider the request from robot i to the coordinator.
Suppose this request and the resulting assignment
messages are delivered. The coordinator’s computed
assignment, Wi, will be disjoint from Unsafe by
Lemma 7. At this time, Unsafe consists only of reach
tubes of radius R surrounding stationary robots. Thus,
Wi will never be closer than distance rs from any robot.

Let vmax be the upper bound on any robot’s velocity,
B be the maximum robot radius, then by setting R >
r(vmax)+B in Subroutine 2 and from Assumption II.1,
we know that robot i always remains within distance
R of the straight line defined by Wi when completing
an assignment. This places i within ReachTube(Wi,R)
at all times.

Now consider the case in which robot i requests
an assignment while at least one other robot has
an assignment in progress. The computed Wi will
be disjoint from all other assignments by Lemma 7
and will therefore be safe. All assignment reach tubes
are disjoint from each other and Unsafe, making all
assignments are safe.

Message losses do not compromise this property.
Consider the case where a request message is lost.
When a request is sent by i, i is stationary at Xi =
wik ∈ Wi. By Lemma 7, no assignment can intersect
any stationary robot’s reach tube, preventing any new
assignment from intersecting Xi. In the second case, an
assignment message to i is lost, and i will again remain
stationary at Xi. The coordinator will update Unsafe to
include the reach tube for the unreceived assignment
Wi. Because the first point in any assignment Wi is
Xi, i’s current position is included in Unsafe and by
Lemma 7 it will not intersect any later assignments.



V. PLATFORM AND EXPERIMENTS

A. Example Platform Implementation

In this section, we briefly discuss the design of a
robotic system used in our laboratory for programming
with StarL. As mentioned earlier, StarL is platform
independent in the sense that any robotic platform
capable of being controlled by software issued com-
mands can support higher-level StarL functions and
applications, that is, once the appropriate platform
layer functions are written. Our robotic platform con-
sists of a collection of identical mobile robots. Each
uses an iRobot Create chassis controlled via Bluetooth
by an attached Android smartphone [1]. The Android
smartphones use Wi-Fi to communicate wirelessly and
runs the StarL applications. Each chassis is outfitted
with a set of infra-red reflective markers which are
tracked by a multi-camera motion capture system. This
camera system calculates the 3D position and orienta-
tion of each robot in a local coordinate system and
broadcasts it to the robots thus providing localization
information.

The StarL platform layer makes extensive use of the
tools included in the Android SDK. The SDK provides
easy access to integrated sensors and peripherals us-
ing the Java programming language. To control the
iRobot Create chassis paired to each phone, a Bluetooth
socket maintains a bidirectional link to the chassis to
transmit motion commands and receive any feedback.
The StarL platform layer uses a Java UDP socket to
transmit and receive message packets. A separate UDP
socket receives localization broadcasts from the infra-
red camera system. In total, the Android smartphone
implementation of StarL comprises just over 7,000 lines
of Java code.

B. Experimental Evaluation

The implementation of the collaborative painting
application of Section III-D was deployed in our lab-
oratory for University of Illinois’ Engineering Open
House. For this demonstration 4 robots participated
in successfully creating light-paintings from pictures
drawn by visitors (see Figure V-A Right).

In this paper, we discuss the behavior of the col-
laborative painting application with larger number of
robots. The application was simulated with varying
numbers of participating robots for two separate input
images. The first image was constructed to prevent
deadlocks from occurring, resulting in every line being
drawn in each execution. The second image is a collec-
tion of random intersecting lines in which deadlock is
possible. Both images are the same size. The execution
duration (the time to completely draw an image or
reach a deadlock) and the number of assignments
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Figure 3. Collaborative painting with no deadlocks possible
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Figure 4. Collaborative painting with deadlocks

made per robot were averaged over five simulations
for each execution size. For consistency, the starting
positions of each robot were fixed in the environment
and the same robot acted as the coordinator in each ex-
ecution. The value of variable H remained unchanged
in each execution, causing all assignments to be of
approximately equal length.

As seen in Figure 3, the completion time for the
painting (Execution Duration) falls with increasing
number of robotic participants. This is expected, each
additional robot allows more simultaneous assign-
ments to be made, completing the image sooner.
Because all assignments are of approximately equal
length, H , the number of assignments remains roughly
constant in each trial. This results in the number of
assignments per robot dropping in larger executions.

Figure 4 demonstrates that the results seen in Fig-
ure 3 are not qualitatively impacted by image complex-
ity and the presence of intersecting lines. Deadlocks
did occur in these simulations, causing the image to
remain incomplete. In these experiments, the percent



Figure 2. Left: StarL simulator screenshot. Center: Example platform implementation. Right: Collaborative painting output image

of the image completed fell roughly linearly from 99%
with four robots to 90% with ten. This image represents
a much more realistic input to the system and the
resulting data demonstrates that the DPP algorithm
is capable of making significant progress under such
conditions.

VI. RELATED WORK

Distributed robots have recently begin to see indus-
trial applications. Perhaps the most notable example
of this is a commercial warehouse automation product
made by Kiva Systems [2]. This system uses a swarm
of mobile robots with centralized coordination to orga-
nize and transport materials throughout warehouses.

A number of robotic software frameworks similar
to StarL, both open-source and commercial, are avail-
able today. None of these frameworks, however, are
intended for use in distributed systems. One such
framework, Robot Operating System (ROS) [4], an
open-source robot framework maintained by Willow
Garage, is prominently used in research. The main
benefit presented by these frameworks is the interop-
erability each provides; a ROS application is capable
of running on any robot which uses ROS.

Researchers developing multi-agent testbeds typi-
cally develop customized programs for each individual
application (demonstration) with limited focus on soft-
ware engineering, programmability, and the problem
of obtaining guarantees for the implemented system.

There exists a large body of literature on mathemat-
ical modeling and analysis of multi-agent systems and
distributed robotic systems and even a brief survey of
this area is beyond the scope of this paper (See, for
example, [9] [6] [17] [11]).

VII. CONCLUSIONS

Observing that there is a lack of tools supporting
modular design, development, and verification of dis-

tributed robotic systems, in this paper we introduce
the StarL platform and its open source implementa-
tion [19]. StarL provides specifications and implenta-
tions of a number of building block functions. These
building blocks have well-defined interfaces and prop-
erties and they can be composed to construct more
sophisticated building blocks and applications which
are amenable to assume-guarantee style reasoning. We
illustrated application development in StarL with three
examples: Geocast, distributed search, and distributed
painting. The modularity and reuse advantage of StarL
building blocks become apparent in developing these
applications. Experiments with a real robotic platform
and a simulator demonstrate the feasibility of the
StarL approach and shows that the performance of a
typical application (distributed painting) scales in the
expected manner. In the future, we plan on expand-
ing the set of building blocks which are available in
StarL. For example, we are currently implementing an
algorithm for maintaining replicated state machines.
Another direction of research is to develop partially
automated verification tools for StarL applications.
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