Problem 1 (10 points). Consider a idealized billiard table of length a and width b. This table has no pockets, its surface has no friction, and it's boundary bounces the balls perfectly. Write a hybrid automaton model of the position of a ball on this table which is shot from the initial position (x_{0}, y_{0}) with the initial velocity (v_{x}, v_{y}). Before starting, read Problem 2.

Problem $2(10+20=30$ points). Consider two satellites orbiting the earth on circular orbits with (constant) angular speeds ω_{1} and ω_{2}.

Part (a) Write a hybrid automaton model of the position of the satellite-pair in the $[0,2 \pi]^{2}$ space.

Part (b) For appropriate choice of ω_{1}, ω_{2}, and the initial position of the satellites, show that this hybrid automaton is bisimilar to the hybrid automaton in Problem 1.

Problem 3. $(15+5+20=40$ points) In this problem, you will model an n-process distributed token ring system as a single hybrid automaton and prove an invariant. In a future homework we will use a theorem prover to prove the same property.

System description. Consider n processes $0, \ldots, n-1$ connected in a directed ring. We say process $i+1 \bmod n$ is the successor of process i. Each process i, has a value v_{i} which can be an element of the set $\{0, \ldots, k\}$ for some $k>n$. Each process behaves as follows: Process $i, i \neq 0$, is said to have a token iff $v_{i} \neq v_{i-1}$. Process 0 has a token iff $v_{0}=v_{n-1}$. Each process has a realvalued period parameter $\Delta_{i}>0$. Exactly every Δ_{i} time, process i performs the following action if it has the token: if $i=0$ then $v_{i}:=\left(v_{i}+1\right) \bmod n$, otherwise $v_{i}:=v_{i-1}$.

Part (a) Write a complete hybrid automaton specification for this system. In your hybrid automaton model, you'll need array type variables. For example, with an array $v:[n] \rightarrow[k]$, each $v[i]$ could model the cooresponding v_{i} 's. You may need additional variablies, for example, for the timers.

Part (b) Show two executions of the system: one that starts from an initial state with a single token and a second with multiple tokens.

Part (c) Suppose that in any initial state of the system, only one process has a token. Prove the following invariant inductively: In any reachable state of the system, only one process has a token. Use the inductive-invariant proof rule

Problem 4 (bonus problem). Let \mathcal{A}_{1} and \mathcal{A}_{2} be compatible hybrid automata and let $\mathcal{A}=\mathcal{A}_{1} \| \mathcal{A}_{2}$. Prove the following.
(a) If $\alpha \in \operatorname{Execs}_{\mathcal{A}}$, then $\alpha\left\lceil A_{i} \in \operatorname{Execs}_{\mathcal{A}_{i}}\right.$, for $i \in\{1,2\}$.
(b) Suppose β be an alternating sequence of actions in $E_{\mathcal{A}}$ and trajectories for the empty set of variables. If $\beta\left\lceil\mathcal{A}_{i} \in \operatorname{Traces}_{\mathcal{A}_{i}}\right.$ then $\beta \in \operatorname{Traces}_{\mathcal{A}}$.

Notation. For an execution (or a trace) α of $\mathcal{A}, \alpha\left\lceil\mathcal{A}_{i}\right.$, for $i \in\{1,2\}$, is the restricted sequence which captures the actions of \mathcal{A}_{i} and the evolution of the variables of \mathcal{A}_{i}. See Chapter 2 of [1] for a formal definition.

References

[1] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The Theory of Timed I/O Automata. Synthesis Lectures on Computer Science. Morgan Claypool, November 2005. Also available as Technical Report MIT-LCS-TR-917.

