ECE/CS 584: Embedded System Verification Fall 2012

Homework 2— Due on October 22™%, 2012 Your name

For this homework, submit a zip file containing appropriate .pvs and .prf files along with a doc-
ument briefly describing your model (using the hybrid automaton language we use in class) and
your proof approach.

Problem 1 (40 points). Consider a idealized billiard table of length a and width b. This table
has no pockets, its surface has no friction, and it’s boundary bounces the balls perfectly. Write a
hybrid automaton model of the position of two balls on this table in PVS. The balls have some
initial velocities. They collide whenever either |z; — 22| < € or |y; — y2| < €, where € is some con-
stant. Whenever a collision occurs, the balls exchange their velocity vectors. Prove conservation
of momentum as an invariant property in PVS.

Some suggestions. Start by modifying the MinProblem theory. Use the simplemachine.pvs
theory and the induction theorem to prove the invariance. Since the mass of the balls remain
constant, you may simplify the model and the proofs to keep track of the velocities (instead of
momentum). You may use basic axioms of real arithmetic (without proving them).

Problem 2. (50 points) In this problem, you will model the n-process distributed token ring
system (from last problem set) in PVS and prove its key invariant.

Recall the system description. Consider n processes 0,...,n — 1 connected in a directed ring.
We say process i +1 mod n is the successor of process i. Each process i, has a value v; which can
be an element of the set {0, ..., k} for some k > n. Each process behaves as follows: Process 1,
i # 0, is said to have a token iff v; # v;_1. Process 0 has a token iff vy = v,,—;. Each process has
a real-valued period parameter A; > 0. Exactly every A; time, process i performs the following
action if it has the token: if i = 0 then v; := (v; + 1) mod n, otherwise v; := v;_1.

Part (a) An almost complete PVS specification of the system is provided from the homeworks
page. This specification, albeit not correct, should parse and typecheck correctly in your instal-
lation of PVS. Complete the specification with appropriate expressions in the lines marked Fill
in.

Part (b) Check for type correctness. Are there any unproved TCCS ? Prove them. You may have
to use basic lemmas on modular arithmetic from prelude.pvs.

Part (c) The predicate two_val implies that there is at most one token in the system. Prove invari-
ance of two_val using the PVS prover. This is broken down into two lemmas in the supplied theory.
Partial proof are provided to get you started.

