
Lecture 1: Introduction to
Embedded System Verification

CS/ECE584

September 4th 2012

Sayan Mitra

Plan for today

• Administrivia

– Project

• Background concepts

– OR A Brief History of
Mechaned Reasoning

Motivation for Embedded System Verification

• Examples of “Embedded” or “Cyber-Physical” Systems

• Characteristics
– A control system

– implemented in software

– with many sensors, signal & data processing algorithms

– communications over networks

Image courtesy NASA Image courtesy NASA

dynamics

state machines

quantization

message drops

Motivation for Embedded System Verification

• Unlike “one-shot” function
computations, computations of
embedded systems are infinite
streams
– Example: Rudder positions

computed by an autopilot
program: L, R, R, R, C, L, …

• Testing and simulations (at least

their naïve applications) can
check for only finitely many
behaviors

• Not sufficient for covering all
behaviors of Embedded Systems

• Is this a real problem?
• Yes!
“June 4, 1996 -- Ariane 5 Flight 501. Working code for the Ariane 4
rocket is reused in the Ariane 5, but the Ariane 5's faster engines
trigger a bug in an arithmetic routine inside the rocket's flight
computer. The error is in the code that converts a 64-bit floating-
point number to a 16-bit signed integer. The faster engines cause
the 64-bit numbers to be larger in the Ariane 5 than in the Ariane 4,
triggering an overflow condition that results in the flight computer
crashing.” --- History's Worst Software Bugs, Simson
Garfinkel, Wired 2005

Motivation for Embedded System Verification

CalTech’s autonomous vehicle ALICE disqualified in the 3rd round of the DARPA Urban challenge after an
unforeseen interaction between the path planner and the obstacle-avoidance algorithm caused ALICE to
crash through the road barriers

More Epic Fails in Embedded Systems:
Mariner I space probe crash, Chinook helicopter crashed (1994, killed all 29 passengers), Swedish
JAS 39 Gripen fighter crash (1993), Mars climate orbiter crash ($125 M, 1999), Patriot missile time
to float conversion error (28 soldiers), …

More general systems: Pentium Div ($475 M), Knight Capital Group’s algorithmic trading
software caused massive volume buys and sells ($440 M),

http://en.wikipedia.org/wiki/Chinook_helicopter
http://en.wikipedia.org/wiki/Chinook_helicopter
http://en.wikipedia.org/wiki/Chinook_helicopter

Motivation for Embedded System Verification

• The promise of Automatic Verification
• An algorithm takes as input

– (a) the description of system A and
– (b) property P
and terminates with output
– (c) a proof that all the behaviors of A satisfy P OR
– (d) a particular behavior of A that violates P

• Examples:
1. A: model of autonomous vehicle P: always stays on the road
2. A: model of a traffic control system P: vehicles do not collide

P

Verification
Algorithm

A A satisfies P

Trace of A violating P

Guarded Optimism

• Hardware verification (model checking) is now part of engineering
practice in the industry

• Synchronous languages like Esterel and Lustre and their analysis
suites are well-adopted in avionics and process control industries

• Success stories from Software Verification: SLAM tool from MSR
• Commercial and non-profit verification enterprises

– Big EDA: Synopsis, Mentor Graphics, Cadence
– Jasper, Coverity, Galois, SRI, etc.

• Explosive growth in academic research
– International conferences: HSCC, EMSoft, ICCPS, CAV, TACAS…

• Plenty of room for research and entrepreneurship

Learning Objectives

• Techniques and formalisms for modeling
systems with dynamics, computation, and
communication
– Hybrid Automata

• To use verification tools (model checkers, SMT
solvers, and theorem provers)

• Exposure to some of the best ideas in CS,
current research directions & trends

• Positive side-effects: connection to synthesis

Administrivia & Course Overview

• Tools: PVS, PHAVer, SpaceEx, UPPAAL
– Download and install
– Start looking at the tutorials and examples

• Webpage:http://engr-courses.engr.illinois.edu/ece584/index.shtml

• Mailing list: illinois-ece584@googlegroups.com
• No Exams!
• Homework (~40%): 3-5 sets with theoretical and

programming problems
• Project (~60%): Project ideas have been announced
• Class participation (10%): Discussion, refine slides &

notes

http://engr-courses.engr.illinois.edu/ece584/index.shtml
http://engr-courses.engr.illinois.edu/ece584/index.shtml
http://engr-courses.engr.illinois.edu/ece584/index.shtml
http://engr-courses.engr.illinois.edu/ece584/index.shtml
http://engr-courses.engr.illinois.edu/ece584/index.shtml
mailto:illinois-ece584@googlegroups.com
mailto:illinois-ece584@googlegroups.com
mailto:illinois-ece584@googlegroups.com

BACKGROUND
Brief History of Mechanized Reasoning

• Gottfried Liebniz (1646-1716) proposed the
development of a “formal system” that would
reduce proving validity of statements to
calculations

– Settle all controversy on any subject whatsoever
could be settled by “taking their pens in their
hands and calculating”

– Reasoning without worrying about the veracity of
individual propositions or statements

Digging deeper into Proofs

• What is a Proof?

• A proof is sufficient evidence for the truth of
a proposition.
– Real world and science: Evidence is drawn from nature

and experiments

– Law: Evidence comes from witnesses and forensics;
“principle of beyond sufficient doubt”

– A mathematical proof of a proposition is sequence of
unambiguous statements that demonstrate its validity
assuming some axioms

http://en.wikipedia.org/wiki/Truth
http://en.wikipedia.org/wiki/Proposition
http://en.wikipedia.org/wiki/Axiom

Example: Euclid’s Geometry

• Axioms
1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the segment as radius and
one endpoint as center.

4. All right angles are congruent.

5. Given any straight line and a point not on it, there "exists one and only one straight line
which passes" through that point and never intersects the first line, no matter how far
they are extended.

• Theorems: Statements about objects in plane geometr
– Sum of angles of a triangle equals 180 degrees

– Pythagoras’ Theorem

– …

Propositional Logic

• Syntax (rules for constructing well formed sentences)

– Countable set of (atomic) propositions PS: P1, P2, P3, …

– S = True False 𝑝1 ¬𝑝1 𝑝1⋀𝑝2 𝑝1 𝑝2 𝑝1 ⇒ 𝑝2|𝑝1 ≡ 𝑝2|
(S), where 𝑝1, p2 are variables of type

• Example: PS = A, B, C then the following are well-
formed propositional statements

• A, (A ∧ B), (A ∧ B) ⇒ (C ∨ A), True ⇒ A, …

Semantics of Propositional Logic
• Let PROPS be the set of all possible propositional logic

statements

• Semantics defines a truth value functions or valuations v that
maps each proposition PS to a truth value (T or F), v: PS {T,
F} and by extension a valuation v’:PROPS{T,F}
– The valuation of a statement is inductively defined by the valuation of

the propositions and the truth table of the operators

– Example (cont.): if v(A) = T, v(B) = T, v(C)= F then A, v’(A ∧ B) = T, v’((A ∧
B) ⇒ (C ∨ A)) = T, v’(True ⇒ A) = T, …

𝑝1 𝑝2 ¬𝑝2 𝑝1⋀𝑝2 𝑝1 ⇒ 𝑝2 𝑝1 ≡ 𝑝2

F F T F T T

F T F F T F

T F T F F F

T T F T T T

Satisfiability, Validity, and Tautologies

• A proposition A is valid v’(A) = T for all valuations v. A is also called a
tautology

• Example: A ⇒ A, A ∨ ¬ 𝐴, (A ⇒ B) ≡ (¬ 𝐵 ⇒ ¬A)
• A proposition is satisfiable if there is a valuation (or truth assignment) v

such that v(A) = T.
• Example (P ∨ Q) /\ (¬ P ∨ ¬ Q) is satisfied by the valuation v(P) = F and

v(Q) = T
• A proposition is unsatisfiable if it is not satisfied by any valuation
• (P ∨ Q) /\ (¬ P ∨ ¬ Q) /\ P is unsatisfiable
• Lemma. A proposition A is a valid if and only if ¬A is unsatisfiable.
• Checking (un)satisfiability is called boolean satisfiability problem (SAT).
• How to check that a given proposition is valid / satisfiable?

– Truth table method (check all possible 2n valuations)
– Decision Procedure: An algorithm for solving a decision problem (e.g. SAT,

Validity)
– Unfortunately, the above exponential search is also the best we can do, in

theory. SAT is NP-complete
– Though modern SAT solvers routinely handle propositions with millions of

atomic propositions and constraints

Four colors suffice

• Any 2D map can be colored with 4 colors

• Any planar graph can be colored with 4
colors!

• This is the (famous) 4 color theorem
proposed in 1852 when Francis Guthrie
(to De Morgan), while trying to color the
map of counties of England

Kenneth Appel and Wolfgang
Haken (1976, at UIUC) proved
the four color theorem to
much acclaim!

Proof reduced infinite set of
possible maps to 1,936
reducible configurations which
had to be checked one by one
by computer and took > 1000
hours

Revisiting Definition of a Proof

• A mathematical proof of a proposition is sequence of
unambiguous statements that demonstrate (to whom?) its
validity assuming some axioms

• Human mathematicians?

• Computers?

• Proof of the 4-color theorem

Graph/Map Coloring with SAT

• For each of the k vertices create 2 binary variables
– a00 = T iff vertex a is RED

– a01 = T iff vertex a is BLUE

– a10 = T iff vertex a is YELLOW

– a11 = T iff vertex a is GREEN

• Encode the graph constraints
– a00 ⇒ (¬ a01 /\ ¬ a10 /\ ¬ a11 /\) /\ …

– (¬ (a00≡b00) \/ ¬ (a01≡b01) \/ ¬ (a10≡b10) \/ ¬ (a11≡b11)) /\ …

• See this page
http://www.cs.cmu.edu/~bryant/boolean/macgregor.html

b c

d

a

e f

g

http://www.cs.cmu.edu/~bryant/boolean/macgregor.html
http://www.cs.cmu.edu/~bryant/boolean/macgregor.html

Reading Assignments

• Further reading: any standard textbook on theory
of computation, e.g., Introduction to Theory of
Computation by Michael Sipser

– Turing Machines

– Decidability

– Complexity classes P, NP, NP-hard, NP-complete

• Next: Predicate Logic, and

 Timed Automata

