ECE/CS 584: Verification of Embedded Computing Systems

Lecture 02

Sayan Mitra

Propositional Logic Summary

- Syntax (rules for constructing well formed sentences)
- Countable set of (atomic) propositions PS: P1, P2, P3, ...
- $\mathrm{S}=$ True $\left|p_{1}\right| \neg S_{1}\left|S_{1} \wedge S_{2}\right|\left(\mathrm{S}_{1}\right)$
- Semantics defines a truth value functions or valuations v that maps each proposition PS to a truth value (T or F), v: $\mathrm{PS} \rightarrow\{\mathrm{T}, \mathrm{F}\}$ and by extension a valuation $v^{\prime}: P R O P S \rightarrow\{T, F\}$
- A proposition A is valid $v^{\prime}(A)=T$ for all valuations v. A is also called a tautology
- A proposition is satisfiable if there is a valuation (or truth assignment) v such that $\mathrm{v}(\mathrm{A})=\mathrm{T}$.
- Checking (un)satisfiability is called boolean satisfiability problem (SAT).
- SAT is (decidable) NP-complete problem

Predicate Logic or First Order Logic

- Syntax defined by a signature of predicate \& function symbols
- Variables
- Predicate symbols with some valence or arity
- a is predicate of 0-arity, like propositions
- $P(x)$ is a predicate of 1-arity
- $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ is a predicate of 2-arity

Function symbols of some valence,
Function symbols of 0 arity are called constants
$\forall x \rightarrow(f(x)=f(y))$
$x=y$

- $f(x)$ is a function of arity 1, e.g., $-x$
a A term $t::=x \mid f(t 1, t 2, t 3, \ldots)$, where $\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3, \ldots$ are terms $f(f(x), y)$
- A formule φ ::= a $|\underline{P(x)}| \mathrm{Q}(\mathrm{x}, \mathrm{y})|\mathrm{t} 1=\mathrm{t} 2| \neg \varphi|(\varphi 1 \Rightarrow \varphi 2)| \ldots \mid \ldots$ $\because \forall x \varphi \mid(\exists x \varphi$
- Example of Well Formed Formula

$$
-\exists x P(x), \forall x \forall y(\mathrm{E}(\mathrm{x}, \mathrm{y}) \Rightarrow \mathrm{E}(\mathrm{y}, \mathrm{x})), \forall x y Q(x, f(y)) \equiv Q(f(y), x)
$$

r - Bounded and unbounded variables, closed formulas

Semantics

- An interpretation or a model M of a FOL formula assigns meaning to all the non-logical symbols and a domain for the variables (i.e., the variables, the predicate symbols, and the function symbols)
- D: Domain of discourse
- For each variable x, a valuation $v(x)$ gives a value in D
- Each function symbol f of arity n is assigned a function $D^{n} \rightarrow D$
- Each predicate symbol P of atity n is assigned a predicate D^{n} $\rightarrow\{\mathrm{T}, \mathrm{F}\}$
- If formula φ evaluates to T with model M , then we say M satisfies $\varphi, M \vDash \varphi$ and φ is said to be satisfiable
- φ is valid if it is true for every interpretation

Example (Un)Decidable Classes

Presberger Arithmetic [1929]

- First order theory of natural numbers with addition (no multiplication)
- Signature: Two constants 0 and 1, and a binary function +
- Axioms:
$-\sim(0=x+1)$
$-x+1=y+1 \Rightarrow x=y$
$-x+0=x$
$-(x+y)+1=x+(y+1)$
- (Infinity Axiom) For any first order formula $\mathrm{P}(\mathrm{x}), \mathrm{P}(0) \wedge(\forall x P(x) \Rightarrow P(x+1)) \Rightarrow$ $\forall y P(y)$
- Example: $\forall x \exists y((y+y=x) \vee(y+y+1=x)$
- Cannot formalize divisibility or prime numbers
- Consistent: For any A, if A can be deduced from the axioms then $\sim \mathrm{A}$ cannot be
- Complete: For any A, either A can be deduced or ~A can be deduced
- Decidable: There is an algorithm which decides for any A, whether A is true or $\sim A$ is true
- Complexity $\mathrm{O}\left(2^{2^{c n}}\right), \mathrm{n}$: length of the formula c is some consant [Fischer \& Rabin 1974]
- 1954 Martin Davis implemented Presberger's decision procedure on "Johnniac" at IAS

Theory of Time Input/Output Automata

Lecture 02
Sayan Mitra

Roadmap

- Syntax
- Semantics
- Abstraction, Implementation
- Simulations
- Composition
- Substitutivity

Variables and Valuations

- A variable x is a name for a state component
- type(x)
- A set of variables X
- A valuation for X maps each $x \in X$ to an element in type(x)
- val (X) : set of all valuations of X

$$
x \in v a l(x)
$$

- $\mathrm{x}: \mathbb{R}$
- color: $\{\mathrm{R}, \mathrm{G}, \mathrm{B}\}$
- clock: $\mathbb{R}^{\geq 0}$
- $X=\{x$, color,clock $\}$
- $\underline{\mathbf{x}}=\langle\mathrm{x} \rightarrow 5.5$, color $\rightarrow \mathrm{G}$, clock \rightarrow 12>
- $\mathbf{y}=\langle x \rightarrow 7.90$, color \rightarrow G, clock \rightarrow 1>
- X. color $=$ G, x.x $=5.5, \mathbf{y} \cdot \mathrm{x}$ $=7.90$

$$
x=\{z, y\} \text { type }(y)=\mathbb{R}
$$

Trajectories

- Time $=\mathbb{R}^{\geq 0}$
- Time interval $=[\mathrm{a}, \mathrm{b}]$
- A trajectory for X is a function $\tau:[0, t] \rightarrow \operatorname{val}(X)$, where $[0, t]$ is an interval
- τ. dom $=[0, t]$
- x is continuous (or analog) if all its trajectories are piecewise continuous
- Discrete if they are piecewise constant
- Notations: τ.fstate, τ.state, τ.x, τ.X
- Prefix, suffix, concatenation

Hybrid Automata (a.k.a Timed Automata Kaynar, et al. 2005)

$\mathcal{A}=(X, Q, \Theta, E, H, \mathcal{D}, \mathcal{T})$

- X : set of internal variables
- $Q \subseteq \operatorname{val}(X)$ set of states
- $\Theta \subseteq Q$ set of start states
- E, H sets of internal and external actions, $\mathrm{A}=\mathrm{E} \cup \mathrm{H}$
- $\mathcal{D} \subseteq Q \times A \times Q$ transitions
- \mathcal{T} : set of trajectories for X which is closed under prefix, suffix, and concatenation

$$
\left(x, a, x^{\prime}\right) \in \mathcal{D} \quad x, x^{\prime} \in Q, a \in A
$$

$$
x^{a} \xrightarrow{\prime}
$$

Graphical Representation used in many articles

TIOA Specification Language
(close to PHAVer \& UPPAAL’s language)

$$
\dot{x}=f(x, u)
$$

Trajectory Semantics

$$
\begin{aligned}
& d(x)=v \\
& d(v)=-g
\end{aligned}
$$

$$
\operatorname{lnv} x \geqslant 0
$$

τ for $X=\{x, v\}$
$t \in \tau$ iff (1) $\forall t \in \tau . \mathrm{dom}$

$$
\begin{aligned}
& \tau(t) \cdot v=\tau(D) \cdot v+\int_{0}^{t}-g d s \\
& \tau(t) \cdot x=\tau(0) \cdot x+\int_{0}^{0} \tau(s) \cdot v d B \\
& \tau(t) \cdot x \geqslant 0
\end{aligned}
$$

(2) $\forall t \in \mathcal{T} . d r m$

