ECE/CS 584: Verification of Embedded Computing Systems

Lecture 02 Sayan Mitra

Propositional Logic Summary

- Syntax (rules for constructing well formed sentences)
 - Countable set of (atomic) propositions PS: P1, P2, P3, ...
 - $S = True | p_1 | \neg S_1 | S_1 \land S_2 | (S_1)$
- Semantics defines a truth value functions or valuations v that maps each proposition PS to a truth value (T or F), v: $PS \rightarrow \{T, F\}$ and by extension a valuation v': PROPS $\rightarrow \{T, F\}$
- A proposition A is valid v'(A) = T for all valuations v. A is also called a tautology
- A proposition is satisfiable if there is a valuation (or truth assignment) v such that v(A) = T.
- Checking (un)satisfiability is called **boolean satisfiability problem** (SAT).
- SAT is (decidable) NP-complete problem

Predicate Logic or First Order Logic

- Syntax defined by a signature of **predicate** & **function** symbols
 - Variables
 - Predicate symbols with some valence or arity
 - a is predicate of 0-arity, like propositions
 P(x) is a predicate of 1-arity

 - Q(x,y) is a predicate of 2-arity
 - Function symbols of some valence,
 - Function symbols of 0 arity are called constants
 - f(x) is a function of arity 1, e.g., -x
 - A term t ::= x | f(t1,t2,t3,...), where t1, t2, t3, ... are terms f(f(x), y)

4×7 (f(x)=f(y))

- A formula $\varphi ::= a | P(x) | Q(x,y) | t1 = t2 | \neg \varphi | (\varphi 1 \Rightarrow \varphi 2) | ... | ...$ $(\forall x \varphi | (\exists x \varphi)$
- **Example of Well Formed Formula**

 $-(\exists x P(x), \forall x \forall y (E(x, y) \Rightarrow E(y, x)), \forall x y Q(x, f(y)) \equiv Q(f(y), x)$

 Bounded and unbounded variables, closed formulas **~**

Semantics

- An interpretation or a model M of a FOL formula assigns meaning to all the non-logical symbols and a domain for the variables (i.e., the variables, the predicate symbols, and the function symbols)
 - D: Domain of discourse
 - For each variable x, a valuation v(x) gives a value in D
 - Each function symbol f of arity n is assigned a function $D^n \rightarrow D$
 - Each predicate symbol P of atity n is assigned a predicate $D^n \rightarrow \{T, F\}$
- If formula φ evaluates to T with model M, then we say M satisfies φ , M $\vDash \varphi$ and φ is said to be satisfiable
- φ is valid if it is true for every interpretation

$\forall x (f(x) = g(x)) \land 7(g(x) \land f(x) ...$

Example (Un)Decidable Classes

Undecidable	Prefix	# of n-ary predicate symbols	# of n-ary function symbols	With Equalit Y	Name
	A∃A	ω, 1	0	Ν	Kahr 1962
	₹ ¥3	ω, 1	0	Ν	Suranyi 1959
	A _* ∃	0,1	0	Ν	Kalmar-Suranyi 1950
	AAA4	0,1	0	Ν	Gurevich 1966
	A	0	2	Y	Gurevich 1976
Decidable	A	0	0, 1	Y	Gurevich 1976
	$\forall^2 \exists$	ω, 1	0	Y	Goldfarb 1984
	∃*∀*	all	0	Y	Ramsey 1930
	∃*A∃*	all	all	Ν	Maslov-Orevkov 1972
	∃*	all	all	Y	Gurevich 1976
-	all	ω	ω	Ν	Lob 1967

Presberger Arithmetic [1929]

- First order theory of natural numbers with addition (no multiplication)
- Signature: Two constants 0 and 1, and a binary function +
- Axioms:
 - $\sim (0 = x + 1)$
 - $x + 1 = y + 1 \Longrightarrow x = y$
 - x + 0 = x
 - (x + y) + 1 = x + (y + 1)
 - (Infinity Axiom) For any first order formula P(x), P(0) $\land (\forall x P(x) \Rightarrow P(x+1)) \Rightarrow \forall y P(y)$
- Example: $\forall x \exists y ((y + y = x) \lor (y + y + 1 = x))$
- Cannot formalize divisibility or prime numbers
- Consistent: For any A, if A can be deduced from the axioms then ~A cannot be
- Complete: For any A, either A can be deduced or ~A can be deduced
- Decidable: There is an algorithm which decides for any A, whether A is true or ~A is true
 - Complexity $O(2^{2^{cn}})$, n : length of the formula c is some consant [Fischer & Rabin 1974]
 - 1954 Martin Davis implemented Presberger's decision procedure on "Johnniac" at IAS

Theory of Time Input/Output Automata

Lecture 02 Sayan Mitra

Roadmap

- Syntax
- Semantics
- Abstraction, Implementation
- Simulations
- Composition
- Substitutivity

Variables and Valuations

- A variable *x* is a name for a state component
- *type(x)*
- A set of variables X
- A valuation for X maps each x ∈ X to an element in type(x)
- val(X): set of all valuations of X
 - $\mathbf{x} \in \operatorname{val}(X)$

- x:R
- color:{R,G,B}
- clock: ℝ^{≥0}
- X = {x,color,clock}
- $\mathbf{x} = \langle \mathbf{x} \rightarrow 5.5, \text{ color } \rightarrow \mathbf{G},$ clock $\rightarrow 12 \rangle$
- $y = \langle x \rightarrow 7.90, \text{ color} \rightarrow G, \text{ clock} \rightarrow 1 \rangle$
- **x**.color = G, **x**.x = 5.5, **y**.x = 7.90

- Time = $\mathbb{R}^{\geq 0}$ •
- Time interval = [a,b] ۲
- A trajectory for X is a function lacksquare $\tau: [0, t] \rightarrow val(X)$, where [0,t] is an interval
- $\tau.dom = [0, t]$
- x is **continuous (or analog)** if all ۲ its trajectories are piecewise continuous
- **Discrete** if they are piecewise constant
- Notations: τ .fstate, τ .lstate, τ .x, ۲ τ.Χ
- Prefix, suffix, concatenation •

Hybrid Automata (a.k.a Timed Automata Kaynar, et al. 2005)

 $\mathcal{A}{=}\left(X,Q,\Theta,E,H,\mathcal{D},\mathcal{T}\right)$

- X: set of internal variables
- $Q \subseteq val(X)$ set of states
- $\Theta \subseteq Q$ set of start states
- *E,H* sets of internal and external actions, A= E U H
- $\mathcal{D} \subseteq Q \times A \times Q$ transitions
- *T*: set of trajectories for X which is closed under prefix, suffix, and concatenation

Graphical Representation used in many articles

1

TIOA Specification Language (close to PHAVer & UPPAAL's language)

$$\begin{aligned} & \stackrel{x=f(x,w)}{\text{Trajectory Semantics}} \\ & \stackrel{d(x)=v}{d(v)=-g} \\ & \stackrel{(v) \times z > 0}{\forall x \neq 0} \\ & \stackrel{(v) \times z \neq 0}{\forall$$