ECE/CS 584: Hybrid Automaton
Modeling Framework
Executions, Reach set, Invariance



Announcements

* Project proposals due in a week
— 2 pages with goals, description & milestones

* Allerton Conference special session on
Verification of CPS

— October 4t 1:30 pm at Allerton House
— Free!



Plan for Today

 Examples of hybrid models
e Executions, reach sets, invariants



Hybrid Automata (a.k.a Timed

Automata Kaynar, et al. 2005)

A=(X,0,0,E,H,D,T)

e X:setof internal or state
variables

e () S val(X) set of states
e 0O C (Q setof start states

e F H sets of internal and
external actions, A=E U H

e DCOXAX(Q

* »T: set of trajectories for X
which is closed under
prefix, suffix, and
concatenation



Bouncing Ball

Automaton Bouncingball(c,h,g)
variables: analog x: Reals := h, v: Reals := 0
states: True
actions: external bounce
transitions: ,,4
ne!

bounce / ”dL* w\b\}\f

prex=0/\v<0 yo5

effv.=-cv <€
AS E"CIVJ"Cz\ﬂ

trajectories:
evolve d(x) =v; d(v) =-g
invariant x > 0 C{(x) e-[qv, bﬂ

Graphical Representation used in TIOA Specification Language
many articles (close to PHAVer & UPPAAL's language)



Semantics: Executions and Traces

An execution fragment of A is
an (possibly infinite) alternating
(A, X)-sequence

Q= Tgaq T1A,To ... Where

a;

, +1
— Vit lstate T;+1. f State

If 7y.fstate € O then its an execution
Execs , set of all executions

The trace of an execution:
external part of the execution.
Alternating sequence of
external actions and
trajectories of the empty set of
variables

T: [0A) 5Vl (X)

ok 3) 2val(9)




Traces

A

e With E={} H={bounce}

— Internal bounce

e With E = {bounce} H = {}

— External bounce

A




Special kinds of executions

Infinite: Infinite sequence of transitions and
trajectories

Closed: Finite with final trajectory with closed

domain LT 08 - Ta A, Lot v
Admissable: Infinite duration [or0)

— May or may not be infinite

Zeno: Infinite but not admissable

— Infinite number of transitions iw
vy - 1

) =<



Periodically Sending Process

send(m:M)
clock = u
clock :=0

‘ Loc 1 l

d(clock) =1
clock <u

clock:=0

Graphical Representation used in

many articles

Automaton PeriodicSend(u, M)
variables: analog clock: Reals := 0
states: True
actions: external send(m:M)
transitions:

send(m)

pre clock = u

eff clock :=0
trajectories:

evolve d(clock) =1

stop when clock=u

TIOA Specification Language
(close to PHAVer & UPPAAL's language)



Another Example: Periodically Sending
Process

Automaton PeriodicSend(u)

send(m) variables: analog
clock =u /\ m =z /\ ~failed clock: Reals := 0, z:Reals, failed:Boolean :=F
clock :=0 actions: external send(m:Reals), fail
transitions:
send(m)

pre clock =u /\ m =z /\ ~failed

Loc 1

d(clock) =1 eff clock :=0
d(z) = f(2) fai
Clock:: O ~failed=> pre true
eff failed =T
. av\A(l\\ {ntrajectories: A
— l(““ evolve d(clock) = 1, d(z) = f(z)
? stop when ~failed /\ clock=u

failed :=T







Modeling a Simple Failure Detector
System

e Periodic send / sand(™) / 1@0’('“>

e Channel W s d\mme\ —_ FD
e Timeout

=

T x

Suspre




Time bounded channel & Simple

Failure Detector Josd
Automaton Timeout(u,M) Automaton Channel(b,M) / 1/
variables: suspected: Boolean :=F, variables: queue: Queue[M,Reals] :={}
clock: Reals :=0 clock: Reals :=0 -
actions: external receive(m:M), actions: external send(m:M), receive(m:M)
timeout transitions:
transitions: send(m)
receive(m) pre true
pre true eff queue := append(<m, clock+b>, queue]
eff clock :=0; suspected := false; receive(m}’
timeout pre head(queue)[1] =m
pre ~suspected /\ clock = u o eff queue := queue tail

eff suspected := true U"f) < d(d’ctrajectories:

trajectories: evolve d(clock) = 1

evolve d(clock) =1 stop when 3 m, d, <m,d> € queue
stop when clock = u /\ ~suspected /\ clock=d



Reachable States and Invariants

A state v € Q is reachableif ¢ Examples:

there exists an execution o 0 Bouncing ball: h > x>0
with a.lstate = v 0 0<v? < 2g(hx)
Reach_, Set of all reachable 0 Periodic send: ~failed
states = clock <u

An S C (@ is an invariant if

Reach 4 < S

— Generalizes the idea of
conservation

So, any invariant necessarily

contains the set ® of start

states



Example Inductive Invariance Proof

. fant, For x € Reach:
w x.queue:‘ﬁgck@/ds x.clock+ﬂ (1)
+ “Proof-1 ™

ix X € Reach;c.
* 3 a € Execcwith aulstate = x. Fix a = 7 a; 7145 ... Ty. [Def. Reach,]

* Induction on the length of the execution y «”
e Base case: If we set x = 7. fstate then (1) should hold X =% i(\\
— Holds vacuously as x.queue = {} [Def of initial states] () v

e Inductive step 1: Consider any 7, let x = t.fstate and x’ = t.Istate and
T.ltime = t. Assume x satisfies (1) and show that x’ also. cepd(m
/

— X.queue = x.queue [trajectory Def], Fix <m,d> in x.queue 'X 9

— Xx.clock < d [By Assumption] y @VOM)
— Suppose x’.clock > d xX—> P’
— X.clock - x.clock >

— t>d-xclock, then there exists t' € T.dom and t’ < t where T/(L’).clo\cki’d_

— By stop when 7.ltime = t’ Which,Ys a contradiction
— Also, since d < w d< x’.clock+t+b

e Inductive step 2: Consider x—send(m)—=>x’

e Inductive step 3: Consider x—receive(m)->x’ follows from Assumption.



Inductive Invariants

e AninvariantSis inductive if foranyv € S
— [fv—a—> v thenv’' €S
— [fv—t> Vv thenvVv’ €S
e Proof rule for establishing an inductive
invariant S
e Theorem: For any set of states S if
1. foranyv € O start state, v € S
2. IfveSandv—a—> v’ thenv’' €S
3. IfveSandv—t—> v thenv' €S
Then Reach , € §



Pre and Post Computations

 For a given set of states Q" € Q, and actiona € A
— Post_trans(Q’,a) ={v' |3veEQ,v—a—> v’}
— Post_trans(Q,A) ={v'|3veQ,a€eA v—a> V'}
— Post_taj(Q) ={v' |[AveEQ,TE€T, v—12 V’}
— Post(Q’) = Post_trans(Q), A) U Post_taj(Q’)
— Pre_trans(Q,A) ={v|3av eEQ,a€A v—a> v’}
— Pre_taj(Q)={v|3vseQ,TeT v—12 Vv'}
— Pre(Q’) = Pre_trans(Q’, A) U Pre_taj(Q’)



Characteristics of Timed Automata

Guards, Transition relations, e Special cases

Invariants, DAEs written in some

language — Deterministic HA

These objects define the Transitions

and Trajectories — Rectangular HA
Transitions and trajectories define

executions and traces — (Alur-Dill) Timed Automata

Decidability of verification problem
will depend on the choice of the

— X = Finitely many variables with finite
language o types = Finite State Machine with
Nondeterministic Labeled transitions

— Transition choice
— Transition relation

— Branching trajectories — X =nreal valued variables {x1, ..., xn}
External interface and A = {} D = {} 2 Dynamical System

— External actions
— Further partitioned into I/O actions

— External variables available in the
hybrid I/O automaton model



Summary & Roadmap

Hybrid Automata
Syntax

Executions

Reach sets, Invariance

Abstractions,
Simulations and
Composition



