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Announcements

• Project proposals due in a week

– 2 pages with goals, description & milestones

• Allerton Conference special session on 

Verification of CPS

– October 4th, 1:30 pm at Allerton House

– Free!



Plan for Today

• Examples of hybrid models

• Executions, reach sets, invariants



Hybrid Automata (a.k.a Timed 

Automata Kaynar, et al. 2005)

�= �,�, Θ, �, �,�, 	

• �: set of internal or state 
variables

• � ⊆ ��(�) set of states

• Θ ⊆ � set of start states

• E,H sets of internal and 
external actions, A= E ∪	H

• �	 ⊆ � × � × �

• 	: set of trajectories for X
which is closed under 
prefix, suffix, and 
concatenation



Bouncing Ball

Automaton Bouncingball(c,h,g)

variables: analog x: Reals := h, v: Reals := 0

states: True

actions: external bounce

transitions:

bounce

pre x = 0 /\ v < 0

eff v := -cv

trajectories:

evolve d(x) = v; d(v) = -g

invariant � ≥ �

Loc 1
� � = �

� � = −�

� ≥ �

TIOA Specification Language 

(close to PHAVer & UPPAAL’s language)

Graphical Representation used in 

many articles

bounce

x = 0 /\ v < 0

v’ := -cv

x:= h



Semantics: Executions and Traces

• An execution fragment of � is 
an (possibly infinite) alternating 
(A, X)-sequence 
� = 	 � 	�!	�!�"�" 	… where 

– ∀	i �& . ()�)*	
�&+!
⟶

�&+!. -()�)*

• If � .fstate ∈	Θ then its an execution

• ExecsExecsExecsExecs� set of all executions

• The trace of an execution: 
external part of the execution. 
Alternating sequence of 
external actions and 
trajectories of the empty set of 
variables



Traces

• With E = {} H = {bounce}

– Internal bounce

• With E = {bounce} H = {}

– External bounce



Special kinds of executions

• Infinite: Infinite sequence of transitions and 

trajectories

• Closed: Finite with final trajectory with closed 

domain 

• Admissable: Infinite duration

– May or may not be infinite

• Zeno: Infinite but not admissable

– Infinite number of transitions in finite time



Periodically Sending Process

Automaton PeriodicSend(u, M)

variables: analog clock: Reals := 0

states: True

actions: external send(m:M)

transitions:

send(m)

pre clock = u

eff clock := 0

trajectories:

evolve d(clock) = 1

stop when clock=u

Loc 1

� 4546 = 1

89:8; ≤ =

TIOA Specification Language 

(close to PHAVer & UPPAAL’s language)

Graphical Representation used in 

many articles

send(m:M)

clock = u

clock := 0

clock:= 0



Another Example: Periodically Sending 

Process
Automaton PeriodicSend(u)

variables: analog 

clock: Reals := 0, z:Reals, failed:Boolean := F 

actions: external send(m:Reals), fail

transitions:

send(m)

pre clock = u /\ m = z /\ ~failed

eff clock := 0

fail

pre true

eff failed := T

trajectories:

evolve d(clock) = 1, d(z) = f(z)

stop when ~failed /\ clock=u

Loc 1
� 4546 = 1	

� > = -(>)

~failed⇒

89:8; ≤ =

send(m)

clock = u /\ m = z /\ ~failed

clock := 0

clock:= 0

fail

true

failed := T





Modeling a Simple Failure Detector 

System

• Periodic send

• Channel

• Timeout



Time bounded channel & Simple 

Failure Detector
Automaton Timeout(u,M)

variables: suspected: Boolean := F, 

clock: Reals := 0

actions: external receive(m:M), 
timeout

transitions:

receive(m)

pre true

eff clock := 0; suspected := false;

timeout

pre ~suspected /\ clock = u

eff suspected := true

trajectories:

evolve d(clock) = 1

stop when clock = u /\ ~suspected

Automaton Channel(b,M)

variables: queue: Queue[M,Reals] := {}

clock: Reals := 0

actions: external send(m:M), receive(m:M)

transitions:

send(m)

pre true

eff queue := append(<m, clock+b>, queue)

receive(m)

pre head(queue)[1] = m

eff queue := queue.tail

trajectories:

evolve d(clock) = 1

stop when ∃ m, d, Qm,dR ∈ queue 

/\ clock=d



Reachable States and Invariants

• A state v ∈	∈	∈	∈	Q	is reachable if 
there exists an execution α
with	α.lstate =	vvvv....

• WXY8Z� Set of all reachable 
states 

• An S ⊆ � is an invariant if 
WXY8Z� ⊆ S
– Generalizes the idea of 

conservation

• So, any invariant necessarily 
contains the set Θ of start 
states

• Examples: 
o Bouncing ball: h ≥	x ≥0

o 0	<	v2 ≤	2g(h-x)

o Periodic	send:	~failed	
⇒ 4546	 ≤ d



Example Inductive Invariance Proof
• Invariant. For x ∈	∈	∈	∈	ReachTC :

∀	<m,dR	∈	x.x.x.x.queue:		x.clock ≤ d ≤	x.clock+b (1)

• Proof. Fix x ∈	∈	∈	∈	ReachTC.	

• ∃	α ∈	ExecTCwith	α.lstate =	x.	x.	x.	x.	Fix	α =	� 	�!	�!�"…�i.	[Def.	ReachTC]

• Induction on the length of the execution

• Base case: If we set x = � . fstate then (1) should hold
– Holds vacuously as x.x.x.x.queue =	{}	[Def of	initial	states]

• Inductive	step	1:	Consider	any	�,	let x = �.fstate and x’ = �.lstate and 
�.ltime = t.  Assume x satisfies (1) and show that x’ also.
– x.x.x.x.queue =	x’.x’.x’.x’.queue [trajectory	trajectory	trajectory	trajectory	DDDDefefefef]]]],	Fix	<m,dR	 in	x.x.x.x.queue

– x.x.x.x.clock ≤	d	[By	Assumption]	

– Suppose	xxxx’.’.’.’.clock R	d		

– xxxx’.’.’.’.clock - x.x.x.x.clock R	d	- x.x.x.x.clock

– t	R	d	- x.x.x.x.clock,	then	there	exists	t’	∈	�.dom and	t’	<	t	where	�(t’).clock	=	d

– By	stop	when	stop	when	stop	when	stop	when	�.ltime =	t’	which	is	a	contradiction

– Also,	since			d ≤	≤	≤	≤	x.clock+b,  d≤	≤	≤	≤	x’.clock+t+b

• Inductive	step	2:	Consider	x—send(m)����x’

• Inductive	step	3:	Consider	x—receive(m)����x’ follows from Assumption.



Inductive Invariants

• An invariant S is inductive if for any v ∈	S
– If	v—a� v’	then	v’ ∈	S

– If	v—τ� v’	then	v’	∈	S

• Proof	rule	for	establishing	an	inductive	
invariant	S	

• Theorem:	For	any	set	of	states	S	if	
1. for	any	v	∈	Θ start	state,	v	∈	S

2. If v ∈	S	and	v—a� v’	then	v’ ∈	S

3. If	v ∈	S	and	v—τ� v’	then	v’	∈	S

Then	Reach� ⊆ x



Pre and Post Computations

• For a given set of states Q’ ⊆ Q, and action a ∈	A

– Post_trans�Q’,	a�	�	k	v’	|	∃	v	∈	Q’,	v—a� v’}

– Post_trans�Q’,	A’�	�	k	v’	|	∃	v	∈	Q’,	a	∈	A,		v—a� v’}

– Post_taj�Q’�	�	k	v’	|	∃	v	∈	Q’,	τ ∈	Τ,	v—τ� v’}

– Post�Q’�	�	Post_trans�Q’,	A�		∪	Post_taj�Q’�	
– Pre_trans�Q’,	A’�	�	k	v	|	∃	v’	∈	Q’,	a	∈	A,		v—a� v’}

– Pre_taj�Q’�	�	k	v	|	∃	v’s	∈	Q’,	τ ∈	Τ,	v—τ� v’}

– Pre�Q’�	�	Pre_trans�Q’,	A�		∪	Pre_taj�Q’�	



Characteristics of Timed Automata

• Guards, Transition relations, 
Invariants, DAEs  written in some 
language

• These objects define the  Transitions 
and Trajectories 

• Transitions and trajectories define 
executions and traces

• Decidability of verification problem 
will depend on the choice of the 
language

• Nondeterministic
– Transition choice 

– Transition relation

– Branching trajectories

• External interface
– External actions

– Further partitioned into I/O actions

– External variables available in the 
hybrid I/O automaton model 

• Special cases

– Deterministic HA

– Rectangular HA

– (Alur-Dill) Timed Automata

– X = Finitely many variables with finite 
types � Finite State Machine with 
Labeled transitions

– X = n real valued variables {x1, …, xn} 
and A = {} D = {} � Dynamical System



Summary & Roadmap

• Hybrid Automata

• Syntax

• Executions

• Reach sets, Invariance

• Abstractions, 

Simulations and 

Composition


