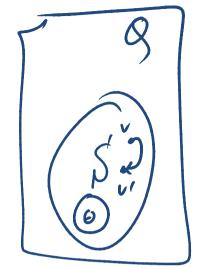
ECE/CS 584: Hybrid Automaton Modeling Framework Invariance, Abstractions, Simulation Lecture 04 Sayan Mitra

Plan for Today

- Invariants (continued)
- Abstraction
- Simulation relations

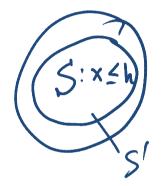
Inductive Invariants

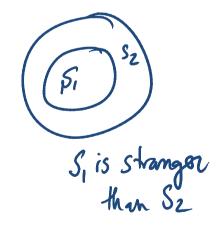
- Given a hybrid automaton $\mathcal{A} = (X, Q, \Theta, E, H, \mathcal{D}, \mathcal{T})$
- An S $\subseteq Q$ is an **invariant** if $Reach_{\mathcal{A}} \subseteq S$
- An invariant S is **inductive** if for any $v \in S$
 - − If v—a → v' then v' ∈ S
 - − If v— τ → v' then v' ∈ S
- Theorem: For any set of states S if
 - 1. for any $v \in \Theta$ start state, $v \in S$
 - 2. If $v \in S$ and $v \rightarrow v'$ then $v' \in S$
 - 3. If $v \in S$ and $v \tau \rightarrow v'$ then $v' \in S$ Then Decelor
 - Then $\operatorname{Reach}_{\mathcal{A}} \subseteq S$
- Proof rule for establishing an inductive invariant S
- Checking an inductive invariant is relatively simple
- Finding useful invariants is in general more involved



Invariants and Inductive Invariants

- All invariants inductive? No
 - Examples: $x \le h$ (not inductive)
 - $-x \le h / v^2 = 2g(h-x)$





Pre and Post Computations

- For a given set of states $Q' \subseteq Q$, and action $a \in A$
 - Post_trans($\underline{Q}', \underline{a}$) = { v' | $\exists v \in Q', v a \rightarrow v'$ }
 - Post_trans($\overline{Q}', \overline{A'}$) = { v' | $\exists v \in Q', a \in A, v \rightarrow v'$ }
 - Post_taj(Q') = { v' | $\exists v \in Q', \tau \in T, v \tau \rightarrow v'$ }
 - $Post(Q') = Post_trans(Q', A) \cup Post_taj(Q')$
- Theorem: S is an inductive invariant iff it is a fixpoint of Post() and it contains Θ.
 - Pre_trans(Q', A') = { $v \mid \exists v' \in Q', a \in A, v \rightarrow v'$ }
 - Pre_taj(Q') = { v | \exists v's \in Q', $\tau \in$ T, v— $\tau \rightarrow$ v'}
 - $Pre(Q') = Pre_trans(Q', A) \cup Pre_taj(Q')$

Abstractions

- Invariants overapproximate the set of reachable states
- E.g. "height is always less than h"
- Abstractions overapproximate executions
- E.g. "there is a bounce every cⁿ seconds"

Pablo Picasso, Portrait of Gertrude Stein, 1906, <u>MOMA</u>, New York. When someone commented that Stein didn't look like her portrait, Picasso replied, "She will". *From Wikipedia*.

Abstraction and Implementation (\leq)

- \mathcal{A}_1 and \mathcal{A}_2 are **comparable** if Examples ? they have the same external interface, i.e., $E_1 = E_2$
- For two comparable automata, \mathcal{A}_1 implements \mathcal{A}_2 if Traces $_1 \subseteq$ Traces₂
- \mathcal{A}_2 is an **abstraction** of \mathcal{A}_1 if $Execs_1 \subseteq Execs_2$
- \mathcal{A}_1 is a **refinement** of \mathcal{A}_2

Abstract Bounce

Concrete

Automaton Bouncingball(c,v₀,g) variables: analog x: Reals := 0, v: Reals := v_0 actions: external bounce transitions: bounce pre x = 0 / v < 0eff v := -cv trajectories: evolve d(x) = v; d(v) = -ginvariant $x \ge 0$

Abstract

Automaton BounceAbs(c,h,g) variables: analog timer: Reals := v₀ n:Naturals=0; actions: external bounce transitions: bounce pre timer = 0 eff n:=n+1; timer := trajectories: evolve d(timer) = -1 invariant timer ≥ 0

Simulations

- Forward simulation relation from \mathcal{A}_1 to \mathcal{A}_2 is a relation R $\subseteq Q_1 \times Q_2$ such that
 - 1. For every $\mathbf{x}_1 \in \Theta_1$ there exists $\mathbf{x}_2 \in \Theta_2$ such that $\mathbf{x}_1 \in \mathbf{X}_2$
 - 2. For every $\mathbf{x_1} \mathbf{a_1} \rightarrow \mathbf{x_1'} \in \mathcal{D}$ and $\mathbf{x_2} \in \mathbf{Q}_2$ such that $\mathbf{x_1} R \mathbf{x_2}$, there exists x,' such that
 - $x_2 \beta \rightarrow x_2'$ and
 - $x_1' R x_2'$ Trace(β) = a_1
 - 3. For every $\tau \in \mathcal{T}$ and $\mathbf{x_2} \in \mathbf{Q}_2$ such that $\mathbf{x_1} \in \mathbf{x_2}$, there exists $\mathbf{x_2'}$ such that
 - $\mathbf{x}_2 \beta \rightarrow \mathbf{x}_2'$ and
 - x₁' R x₂'
 - Trace(β) = τ
- Theorem. If there exists a forward simulation relation from \mathcal{A}_1 to \mathcal{A}_2 then Traces \subseteq Traces

Forward Simulation for Abstraction

- Forward simulation relation from \mathcal{A}_1 to \mathcal{A}_2 is a relation R $\subseteq Q_1 \times Q_2$ such that
 - 1. For every $\mathbf{x_1} \in \Theta_1$ there exists $\mathbf{x_2} \in \Theta_2$ such that $\mathbf{x_1} \in \mathbf{x_2}$
 - 2. For every $\mathbf{x_1} \mathbf{a_1} \rightarrow \mathbf{x_1'} \in \mathcal{D}$ and $\mathbf{x_2} \in \mathbf{Q}_2$ such that $\mathbf{x_1} \in \mathbf{x_{2_1}}$ there exists $\mathbf{x_2'}$ such that
 - $\mathbf{x_2} a_1 \rightarrow \mathbf{x_2'}$ and
 - x₁'R x₂'
 - 3. For every $\tau \in T$ and $\mathbf{x_2} \in Q_2$ such that $\mathbf{x_1} R \mathbf{x_2}$, there exists $\mathbf{x_2'}$ such that
 - $x_2 \tau \rightarrow x_2'$ and
 - x₁' R x₂'
- Theorem. If there exists a forward simulation relation from \mathcal{A}_1 to \mathcal{A}_2 then $\operatorname{Execs}_1 \subseteq \operatorname{Execs}_2$

Characteristics of Hybrid Automata

- Guards, Transition relations, Invariants, DAEs written in some language
- These objects define the Transitions and Trajectories
- Transitions and trajectories define executions and traces
- Decidability of verification problem will depend on the choice of the language
- Nondeterministic
 - Transition choice
 - Transition relation
 - Branching trajectories
- External interface
 - External actions
 - Further partitioned into I/O actions
 - External variables available in the hybrid I/O automaton model

- Special cases
 - Deterministic HA
 - c <ysd

a <x < b A

- Rectangular HA X:=C
- ー (Alur-Dill) Timed Automată ミにゅっとう

$\dot{\mathbf{x}} = \mathbf{C}$

 $\dot{x} \in \mathbb{E}^{a_1 b_1}$ $\dot{x} = a$

- X = Finitely many variables with finite types → Finite State Machine with Labeled transitions
- X = n real valued variables {x1, ..., xn}
 and A = {} D = {} → Dynamical System