
ECE/CS 584: Hybrid Automaton

Modeling Framework

Simulations and Composition

Lecture 05

Sayan Mitra

Plan for Today

• Abstraction and Implementation relations
(continued)

• Composition

• Substitutivity

• Looking ahead
– Tools: PVS, SpaceEx, Z3, UPPAAL

– Decidable classes

– Invariant generation

– CEGAR

– …

Some nice properties of Forward

Simulation
• Let �,ℬ, and	� be comparable TAs. If R1 is a forward

simulation from � to ℬ and R2 is a forward simulation from
ℬ to �, then R1 ∘ R2 is a forward simulation from � to �

• � implements �

• The implementation relation is a preorder of the set of all
(comparable) hybrid automata
– (A preorder is a reflexive and transitive relation)

• If R is a forward simulation from � to ℬ and R-1 is a forward
simulation from ℬ to � then R is called a bisimulation and
ℬ are � bisimilar

• Bisimilarity is an equivalence relation
– (reflexive, transitive, and symmetric)

A Simulation Example

• � is an implementation
of ℬ

• Is there a forward
simulation from � to ℬ ?

• Consider the forward
simulation relation

• � ∶ 2—c�4 cannot be
simulated by ℬ from 2’
although (2,2’) are
related.

1

2’
3

4

a
b

c

1 2

3

4

a

b

c

2

�	

ℬ

a

Backward Simulations

• Backward simulation relation from �1 to �2 is a
relation R ⊆	�
 ×	�� such that
1. If x1 ∈	Θ1 and x1 R x2 then x2 ∈	Θ2 such that

2. If x’1 R x’2 and x2—a� x2’ then
• x2 –����� x2’ and

• x1 R x2

• Trace(�) = a1

3. For every �∈	� and	x2 ∈	Q2	
such that x1’ R x2’, there exists x2

such that
• x2 –����� x2’ and

• x1 R x2

• Trace(�) = �

• Theorem. If there exists a backward simulation relation
from �1 to �2 then ClosedTraces1 ⊆ ClosedTraces2

Composition of Hybrid Automata

• The parallel composition operation on
automata enable us to construct larger and
more complex models from simpler automata
modules

• �1 to �2 are compatible if X1 ∩	X2=	H1 ∩	A2
=	H2 ∩	A1=	∅

• Variable names are disjoint; Action names of
one are disjoint with the internal action
names of the other

Composition

• For compatible �1 and �2 their composition �1 || �2 is the structure �=
�, �, Θ, , !, ", �

• � = �1	 ∪ �2 (disjoint union)

• � ⊆ $%&(�)

• Θ =) ∈ � 	∀	+	 ∈ 1,2 :). �+ ∈ Θ+}
• H = H1 ∪	H2 (disjoint	union)	
• E	=	E1 ∪	E2		and		A= E ∪	H
•), %,) ∈ 	" iff

– % ∈ !1 and (). �1, %,)′. �1) ∈ 	"1 and). �2 =). �2
– % ∈ !2 and (). �2, %,)′. �2) ∈ 	"2 and). �1 =). �1
– Else, (). �1, %,)′. �1) ∈ 	"1 and (). �2, %,)′. �2) ∈ 	"2

• �: set of trajectories for X
– 7 ∈ 	� iff ∀	+	 ∈ 1,2 ,		7.Xi	∈ �i

TTTTheorem	.	heorem	.	heorem	.	heorem	.	� is also a hybrid automaton.

Example: Send || TimedChannel

Automaton PeriodicSend(u, M)

variables: analog clock: Reals := 0

states: True

actions: external send(m:M)

transitions:

send(m)

pre clock = u

eff clock := 0

trajectories:

evolve d(clock) = 1

stop when clock=u

Automaton Channel(b,M)

variables: queue: Queue[M,Reals] := {}

clock1: Reals := 0

actions: external send(m:M), receive(m:M)

transitions:

send(m)

pre true

eff queue := append(<m, clock1+b>, queue)

receive(m)

pre head(queue)[1] = m

eff queue := queue.tail

trajectories:

evolve d(clock1) = 1

stop when ∃ m, d, Am,dB ∈ queue

/\ clock=d

Composed Automaton

Automaton SC(b,u)

variables: queue: Queue[M,Reals] := {}

clock_s, clock_c: Reals := 0

actions: external send(m:M), receive(m:M)

transitions:

send(m)

pre clock_s = u

eff queue := append(<m, clock_c+b>, queue); clock_s := 0

receive(m)

pre head(queue)[1] = m

eff queue := queue.tail

trajectories:

evolve d(clock_c) = 1; d(clock_s) = 1

stop when

(∃ m, d, <m,dB ∈ queue /\ clock_c=d)

\/ (clock_s=u)

Some properties about composed

automata

• Let	�= �1 || �2 and let α be	an	execution	
fragment	of	�.	
– Then αi=	α|(Ai,	Xi)	is	an	execution	fragment	of	�i

– α is	time-bounded	iff both	α1	and	α2	 are	time-
bounded

– α is	admissible	iff both	α1	and	α2	 are	admissible
– α is	closed	iff both	α1	and	α2	 are	closed
– α is	non-Zeno	iff both	α1	and	α2	 are	non-Zeno
– α is	an	execution	iff both	α1	and	α2	 are	executions

• Traces� = 	�	 	�|	Ei ϵ Traces �i }

• See	examples	in	the	TIOA	monograph

Substitutivity

• Theorem. Suppose �1 , �2 and ℬ have the same external

interface and �1 , �2 are compatible with ℬ. If �1 implemens

�2 then �1|| ℬ implements �2 || ℬ

• Proof sketch.

• Define the simulation relation:

Substutivity

• Theorem. Suppose �1 �2 ℬ1 and ℬ2 are HAs and
�1 �2 have the same external actions and ℬ1 ℬ2
have the same external actions and �1 �2 is
compatible with each of	ℬ1 and ℬ2

• If �1 implements	ℬ1 and �2 	implements	ℬ2
then �1 || ℬ1 implements	�2||ℬ2 .

• Proof. �1 || ℬ1 implements �2||ℬ1

�2||ℬ1 implements �2||ℬ2

By transitivity of implementation relation

�1 || ℬ1 implements �2||ℬ2

• Theorem. �1 || ℬ2 implements	�2||ℬ2 and

ℬ1 implements ℬ2 then �1 || ℬ1

implements	�2||ℬ2.

Summary

• Implementation Relation

– Forward and Backward simulations

• Composition

• Substitutivity

