ECE/CS 584: Hybrid Automaton Modeling Framework Simulations and Composition

Lecture 05

Sayan Mitra

Plan for Today

- Abstraction and Implementation relations (continued)
- Composition
- Substitutivity
- Looking ahead
- Tools: PVS, SpaceEx, Z3, UPPAAL
- Decidable classes
- Invariant generation
- CEGAR
- ...

Some nice properties of Forward Simulation

- Let \mathcal{A}, \mathcal{B}, and \mathcal{C} be comparable TAs. If R_{1} is a forward simulation from \mathcal{A} to \mathcal{B} and R_{2} is a forward simulation from \mathcal{B} to \mathcal{C}, then $R_{1} \circ R_{2}$ is a forward simulation from \mathcal{A} to \mathcal{C}
- \mathcal{A} implements $\mathcal{C} \quad\left\{(a, b) \in R_{1} \circ R_{2} \mid \exists c(a, c) \in R_{1}(c, b) \in R_{2}\right\}$
- The implementation relation is a preorder of the set of all (comparable) hybrid automata $<,=$,
- (A preorder is a reflexive and transitive relation)
- If R is a forward simulation from \mathcal{A} to \mathcal{B} and R^{-1} is a forward simulation from \mathcal{B} to \mathcal{A} then R is called a bisimulation and \mathcal{B} are \mathcal{A} bisimilar
- Bisimilarity is an equivalence relation
- (reflexive, transitive, and symmetric)

A Simulation Example

Backward Simulations

- Backward simulation relation from \mathcal{A}_{1} to \mathcal{A}_{2} is a relation $\mathrm{R} \subseteq Q_{1} \times Q_{2}$ such that

1. If $\mathbf{x}_{1} \in \Theta_{1}$ and $\mathbf{x}_{1} R \mathbf{x}_{2}$ then $\mathbf{x}_{\mathbf{2}} \in \Theta_{2}$ such that
2. If $x_{1}{ }^{R} x^{\prime}{ }_{2}$ and $x_{2}-a \rightarrow x_{2}{ }^{\prime}$ then

- $x_{2}-\boldsymbol{\beta} \rightarrow x_{2}{ }^{\prime}$ and
- $x_{1} R x_{2}$
- Trace $(\beta)=a_{1}$

3. For every $\boldsymbol{\tau} \in \mathcal{T}$ and $\mathbf{x}_{\mathbf{2}} \in \mathrm{Q}_{2}$ such that $\mathbf{x}_{\mathbf{1}}{ }^{\prime} \mathrm{R} \mathbf{x}_{\mathbf{2}}{ }^{\prime}$, there exists $\mathbf{x}_{\mathbf{2}}$ such that

- $x_{2}-\beta \rightarrow x_{2}$ and
- $x_{1} R x_{2}$
- $\operatorname{Trace}(\beta)=\tau$
- Theorem. If there exists a backward simulation relation from \mathcal{A}_{1} to \mathcal{A}_{2} then ClosedTraces ${ }_{1} \subseteq{\text { Closed } \text { Traces }_{2}}^{2}$

Composition of Hybrid Automata

- The parallel composition operation on automata enable us to construct larger and more complex models from simpler automata modules
- \mathcal{A}_{1} to \mathcal{A}_{2} are compatible if $\mathrm{X}_{1} \cap \mathrm{X}_{2}=\mathrm{H}_{1} \cap \mathrm{~A}_{2}$ $=\mathrm{H}_{2} \cap \mathrm{~A}_{1}=\emptyset$
- Variable names are disjoint; Action names of one are disjoint with the internal action names of the other

Composition

- For compatible \mathcal{A}_{1} and \mathcal{A}_{2} their composition $\mathcal{A}_{1} \| \mathcal{A}_{2}$ is the structure $\mathcal{A}=$ $(X, Q, \Theta, E, H, \mathcal{D}, \mathcal{T})$
- $X=X_{1} \cup X_{2}$ (disjoint union)
- $Q \subseteq \operatorname{val}(X)$
- $\Theta=\left\{\boldsymbol{x} \in Q \mid \forall i \in\{1,2\}: \boldsymbol{x} . X i \in \Theta_{i}\right\}$
- $H=H_{1} \cup H_{2}$ (disjoint union)
- $E=E_{1} \cup E_{2}$ and $\mathrm{A}=\mathrm{E} \cup \mathrm{H}$
- $\left(\boldsymbol{x}, a, x^{\prime}\right) \in \mathcal{D}$ iff
- $a \in H_{1}$ and $\left(\boldsymbol{x} \cdot X_{1}, a, \boldsymbol{x}^{\prime} \cdot X_{1}\right) \in \mathcal{D}_{1}$ and $\boldsymbol{x} \cdot X_{2}=\boldsymbol{x} \cdot X_{2} \bumpeq$
- $a \in H_{2}$ and $\left(\boldsymbol{x} \cdot \bar{X}_{2}, a, \boldsymbol{x}^{\prime} \cdot X_{2}\right) \in \mathcal{D}_{2}$ and $\boldsymbol{x} \cdot X_{1}=\boldsymbol{x} \cdot X_{1}$
- EISe) $\left(x \cdot X_{1}, a, x^{\prime} \cdot X_{1}\right) \in \mathcal{D}_{1}$ and $\left(x \cdot \underline{X}_{2}, a, x^{\prime} \cdot X_{2}\right) \in \mathcal{D}_{2} \leftarrow a \in E_{1} \cup E_{2}$
- \mathcal{T} : set of trajectories for \bar{X}
- $\tau \in \mathcal{T}$ iff $\forall i \in\{1,2\}, \tau . X i \in \mathcal{T}_{\mathrm{i}}$

Theorem. \mathcal{A} is also a hybrid automaton.

Example: Send || TimedChannel

Automaton Channel(b,M) variables: queue: Queue[M,Reals] := $\}$
clock1: Reals := 0
actions: external send(m:M), receive(m:M)
transitions:

send(m)

pre true
eff queue := append(<m, clock1+b>, queue)
receive(m)
pre head(queue) $[1]=m$
eff queue := queue.tail
trajectories:
evolve $\mathrm{d}($ clock1 $)=1$
stop when $\exists \mathrm{m}, \mathrm{d},<\mathrm{m}, \mathrm{d}\rangle \in$ queue

- cloc $1=$ =d

Automaton PeriodicSend(u, M)
variables: analog clock: Reals := 0
states: True
actions: external send(m:M)
transitions:
$\frac{\text { send }(m)}{\text { pre clock }=u}$
eff clock $:=0$
trajectories:
evolve $d($ clock $)=1$
stop when clock=u

Composed Automaton

Automaton $\mathrm{SC}(\mathrm{b}, \mathrm{u})$
variables: queue: Queue[M,Reals] := $\}$
clock_s, clock_c: Reals := 0
actions: external send(m:M), receive(m:M)
transitions:
send(m)
pre clock_s = u
eff queue := append(<m, clock_c+b>, queue); clock_s := 0
receive(m)
pre head(queue) $[1]=m$
eff queue := queue.tail
trajectories:
evolve d(clock_c) = 1; d(clock_s) = 1
stop when
$(\exists \mathrm{m}, \mathrm{d},<\mathrm{m}, \mathrm{d}>\in$ queue $/ \backslash$ clock_c=d)
V (clock_s=u)

Some properties about composed automata

- Let $\mathcal{A}=\mathcal{A}_{1}| | \mathcal{A}_{2}$ and let α be an execution fragment of \mathcal{A}.
- Then $\alpha_{\mathrm{i}}=\alpha\left\lceil\left(\mathrm{A}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}\right)\right.$ is an execution fragment of \mathcal{A}_{i}
$-\alpha$ is time-bounded iff both α_{1} and α_{2} are timebounded
$-\alpha$ is admissible iff both α_{1} and α_{2} are admissible
$-\alpha$ is closed iff both α_{1} and α_{2} are closed
$-\alpha$ is non-Zeno iff both α_{1} and α_{2} are non-Zeno
$-\alpha$ is an execution iff both α_{1} and α_{2} are executions
- Traces $\mathcal{A}=\left\{\boldsymbol{\beta} \mid \boldsymbol{\beta}\left\lceil\mathrm{E}_{\mathrm{i}} \in \operatorname{Traces} \mathcal{A}_{\mathrm{i}}\right\}\right.$ - (1)
- See examples in the TIOA monograph

Substitutivity

- Theorem. Suppose $\mathcal{A}_{1}, \mathcal{A}_{2}$ and \mathcal{B} have the same external interface and $\mathcal{A}_{1}, \mathcal{A}_{2}$ are compatible with \mathcal{B}. If \mathcal{A}_{1} implements \mathcal{A}_{2} then $\mathcal{A}_{1}| | \mathcal{B}$ implements $\mathcal{A}_{2} \| B \quad \operatorname{Traces}_{A_{1} \| B} \leq \operatorname{Traccs}_{A_{2} \| B}$
- Proof sketch.
- Define the simulation relation:

$$
A_{1}\left\|B \underset{\uparrow}{\leqslant} A_{2}\right\| B
$$

$$
\begin{aligned}
& R \subseteq Q_{A_{1} \| B} \times Q_{A_{2} \| B} \\
& x \in \varrho_{A_{1} \cup B}(x, y) \text { inf }(1)\left(x \cdot x_{1}, y \cdot x_{1}\right) \in R_{A_{1} A_{2}} \quad y \cdot x_{1} \in \Theta_{A_{2}} \\
& y \in Q_{R_{2} \| B} \\
& X_{A_{1} \| B}=X_{1} \cup X_{B} \\
& \text { (2) } x \cdot x_{B}=y \cdot x_{B} \\
& \text { Cases if } a \in H_{1} \\
& \beta \triangleq a \\
& \left(x^{\prime} \cdot X_{1}, y^{\prime} \cdot x_{1}\right) \in R_{A_{1} A_{2}} \\
& x^{\prime} \cdot x_{B}=y^{\prime} \cdot y_{B}(\text { by } \text { Camp) })
\end{aligned}
$$

Substutivity

- Theorem. Suppose $\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{B}_{1}$ and \mathcal{B}_{2} are HAs and $\mathcal{A}_{1} \mathcal{A}_{2}$ have the same external actions and $\mathcal{B}_{1} \mathcal{B}_{2}$ have the same external actions and $\mathcal{A}_{1} \mathcal{A}_{2}$ is compatible with each of \mathcal{B}_{1} and \mathcal{B}_{2}
- If \mathcal{A}_{1} implements \mathcal{B}_{1} and \mathcal{A}_{2} implements \mathcal{B}_{2} then $\mathcal{A}_{1} \| \mathcal{B}_{1}$ implements $\mathcal{A}_{2} \| \mathcal{B}_{2}$.
- Proof. $\mathcal{A}_{1} \| \mathcal{B}_{1}$ implements $\mathcal{A}_{2}| | \mathcal{B}_{1}$
$\mathcal{A}_{2}| | \mathcal{B}_{1}$ implements $\mathcal{A}_{2} \| \mathcal{B}_{2}$
By transitivity of implementation relation
$\mathcal{A}_{1} \| \mathcal{B}_{1}$ implements $\mathcal{A}_{2}| | \mathcal{B}_{2}$
- Theorem. $\mathcal{A}_{1} \| \mathcal{B}_{2}$ implements $\mathcal{A}_{2} \| \mathcal{B}_{2}$ and \mathcal{B}_{1} implements \mathcal{B}_{2} then $\mathcal{A}_{1} \| \mathcal{B}_{1}$ implements $\mathcal{A}_{2}| | \mathcal{B}_{2}$.
$\beta \in \operatorname{trac} A_{1} \| B_{1}$
By (1) $\beta \Gamma A_{1} \in$ trace $_{A_{1}} \& \beta \Gamma B_{1} \in$ trace $_{B_{1}}$
B_{1} implements $B_{2} \Rightarrow \beta \Gamma B_{1} \in$ trace B_{2}
B_{1}, B_{2} same interface $\beta\left\lceil B_{1}=\beta \Gamma B_{2} \in\right.$ trace B_{2}

Summary

- Implementation Relation
- Forward and Backward simulations
- Composition
- Substitutivity

