
ECE/CS 584: Hybrid Automaton 

Modeling Framework

Simulations and Composition

Lecture 05

Sayan Mitra



Plan for Today

• Abstraction and Implementation relations 
(continued)

• Composition

• Substitutivity

• Looking ahead
– Tools: PVS, SpaceEx, Z3, UPPAAL

– Decidable classes

– Invariant generation 

– CEGAR

– …



Some nice properties of Forward 

Simulation
• Let �,ℬ, and	� be comparable TAs. If R1 is a forward 

simulation from � to ℬ and R2 is a forward simulation from 
ℬ to �, then R1 ∘ R2 is a forward simulation from � to �

• � implements �

• The implementation relation is a preorder of the set of all 
(comparable) hybrid automata
– (A preorder is a reflexive and transitive relation)

• If R is a forward simulation from � to ℬ and R-1 is a forward 
simulation from ℬ to � then R is called a bisimulation and 
ℬ are � bisimilar

• Bisimilarity is an equivalence relation
– (reflexive, transitive, and symmetric)



A Simulation Example

• � is an implementation 
of ℬ

• Is there a forward 
simulation from � to ℬ ?

• Consider the forward 
simulation relation

• � ∶ 2—c�4 cannot be 
simulated by ℬ from 2’ 
although (2,2’) are 
related. 
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Backward Simulations

• Backward simulation relation from �1 to �2 is a 
relation R ⊆	�
 ×	�� such that
1. If x1 ∈	Θ1 and x1 R x2 then x2 ∈	Θ2 such that

2. If x’1 R x’2 and x2—a� x2’ then 
• x2 –����� x2’ and

• x1 R x2

• Trace(�) = a1

3. For every �∈	� and	x2 ∈	Q2	
such that x1’ R x2’, there exists x2

such that 
• x2 –����� x2’ and

• x1 R x2

• Trace(�) = �

• Theorem. If there exists a backward simulation relation 
from �1 to �2 then  ClosedTraces1 ⊆ ClosedTraces2



Composition of Hybrid Automata

• The parallel composition operation on 
automata enable us to construct larger and 
more complex models from simpler automata 
modules

• �1 to �2 are compatible if X1 ∩	X2=	H1 ∩	A2
=	H2 ∩	A1=	∅

• Variable names are disjoint; Action names of 
one are disjoint with the internal action 
names of the other



Composition

• For compatible �1 and �2 their composition �1 || �2 is the structure �= 
�, �, Θ,  , !, ", �

• � = �1	 ∪ �2 (disjoint union)

• � ⊆ $%&(�)

• Θ = 	) ∈ � 	∀	+	 ∈ 1,2 : 	). �+ ∈ Θ+}
• H = H1 ∪	H2 (disjoint	union)	
• E	=	E1 ∪	E2		and		A= E ∪	H
• ), %, ) ∈ 	" iff

– % ∈ !1 and (). �1, %, )′. �1) ∈ 	"1 and ). �2 = ). �2
– % ∈ !2 and (). �2, %, )′. �2) ∈ 	"2 and ). �1 = ). �1
– Else, (). �1, %, )′. �1) ∈ 	"1 and (). �2, %, )′. �2) ∈ 	"2

• �: set of trajectories for X
– 7 ∈ 	� iff  ∀	+	 ∈ 1,2 ,		7.Xi	∈ �i

TTTTheorem	.	heorem	.	heorem	.	heorem	.	� is also a hybrid automaton.



Example: Send || TimedChannel

Automaton PeriodicSend(u, M)

variables: analog clock: Reals := 0

states: True

actions: external send(m:M)

transitions:

send(m)

pre clock = u

eff clock := 0

trajectories:

evolve d(clock) = 1

stop when clock=u

Automaton Channel(b,M)

variables: queue: Queue[M,Reals] := {}

clock1: Reals := 0

actions: external send(m:M), receive(m:M)

transitions:

send(m)

pre true

eff queue := append(<m, clock1+b>, queue)

receive(m)

pre head(queue)[1] = m

eff queue := queue.tail

trajectories:

evolve d(clock1) = 1

stop when ∃ m, d, Am,dB ∈ queue 

/\ clock=d



Composed Automaton

Automaton SC(b,u)

variables: queue: Queue[M,Reals] := {}

clock_s, clock_c: Reals := 0

actions: external send(m:M), receive(m:M)

transitions:

send(m)

pre clock_s = u

eff queue := append(<m, clock_c+b>, queue); clock_s := 0

receive(m)

pre head(queue)[1] = m

eff queue := queue.tail

trajectories:

evolve d(clock_c) = 1; d(clock_s) = 1

stop when 

(∃ m, d, <m,dB ∈ queue /\ clock_c=d) 

\/ (clock_s=u)



Some properties about composed 

automata

• Let	�= �1 || �2 and let α be	an	execution	
fragment	of	�.	
– Then αi=	α|(Ai,	Xi)	is	an	execution	fragment	of	�i

– α is	time-bounded	iff both	α1	and	α2	 are	time-
bounded

– α is	admissible	iff both	α1	and	α2	 are	admissible
– α is	closed	iff both	α1	and	α2	 are	closed
– α is	non-Zeno	iff both	α1	and	α2	 are	non-Zeno
– α is	an	execution	iff both	α1	and	α2	 are	executions

• Traces� = 	�	 	�|	Ei ϵ Traces �i }

• See	examples	in	the	TIOA	monograph



Substitutivity

• Theorem. Suppose �1 , �2 and  ℬ have the same external 

interface and �1 , �2 are compatible with ℬ. If �1 implemens 

�2 then �1|| ℬ implements �2 || ℬ

• Proof sketch.

• Define the simulation relation:



Substutivity

• Theorem. Suppose �1 �2 ℬ1 and ℬ2 are HAs and 
�1 �2 have the same external actions and ℬ1 ℬ2
have the same external actions and �1 �2 is 
compatible with each of	ℬ1 and ℬ2

• If �1 implements	ℬ1 and �2 	implements	ℬ2
then �1 || ℬ1 implements	�2||ℬ2 . 

• Proof. �1 || ℬ1 implements �2||ℬ1

�2||ℬ1 implements �2||ℬ2

By transitivity of implementation relation 

�1 || ℬ1 implements �2||ℬ2



• Theorem. �1 || ℬ2 implements	�2||ℬ2 and 

ℬ1 implements ℬ2 then �1 || ℬ1

implements	�2||ℬ2.



Summary

• Implementation Relation

– Forward and Backward simulations

• Composition

• Substitutivity


