ECE/CS 584: Hybrid Automaton Modeling Framework Simulations and Composition Lecture 05

Sayan Mitra

Plan for Today

- Abstraction and Implementation relations (continued)
- Composition
- Substitutivity
- Looking ahead
 - Tools: PVS, SpaceEx, Z3, UPPAAL
 - Decidable classes
 - Invariant generation
 - CEGAR
 - ...

Some nice properties of Forward Simulation

- Let \mathcal{A}, \mathcal{B} , and \mathcal{C} be comparable TAs. If R_1 is a forward simulation from \mathcal{A} to \mathcal{B} and R_2 is a forward simulation from B to C, then $R_1 \circ R_2$ is a forward simulation from A to C
 • A implements C $\begin{cases} (a_1b) \in R_1 \circ R_2 \mid \exists c \ (a_1c) \in R_1 \ (c_1b) \in R_2 \end{cases}$
- The implementation relation is a preorder of the set of all (comparable) hybrid automata $< = , \leq$ - (A preorder is a reflexive and transitive relation)
- If R is a forward simulation from \mathcal{A} to \mathcal{B} and R⁻¹ is a forward simulation from \mathcal{B} to \mathcal{A} then R is called a **bisimulation** and
 - \mathcal{B} are \mathcal{A} bisimilar
- Bisimilarity is an equivalence relation
 - (reflexive, transitive, and symmetric)

A Simulation Example

- \mathcal{A} is an implementation of \mathcal{B}
- Is there a forward simulation from A to B?
- { Consider the forward simulation relation

A: 2-c→4 cannot be simulated by B from 2' although (2,2') are related.

Backward Simulations

- **Backward simulation** relation from \mathcal{A}_1 to \mathcal{A}_2 is a relation $\mathbb{R} \subseteq Q_1 \times Q_2$ such that
 - 1. If $\mathbf{x_1} \in \Theta_1$ and $\mathbf{x_1} R \mathbf{x_2}$ then $\mathbf{x_2} \in \Theta_2$ such that
 - 2. If $\mathbf{x'_1} \mathbb{R} \mathbf{x'_2}$ and $\mathbf{x_2} \mathbf{a} \rightarrow \mathbf{x_2'}$ then
 - $x_2 \beta \rightarrow x_2'$ and
 - **x**₁ R **x**₂
 - Trace(β) = a₁
 - 3. For every $\tau \in \mathcal{T}$ and $\mathbf{x_2} \in Q_2$ such that $\mathbf{x_1'} \in \mathbf{x_{2'}}$ there exists $\mathbf{x_2}$ such that
 - $x_2 \beta \rightarrow x_2'$ and
 - x₁ R x₂
 - Trace(β) = τ
- **Theorem.** If there exists a backward simulation relation from \mathcal{A}_1 to \mathcal{A}_2 then $ClosedTraces_1 \subseteq ClosedTraces_2$

Composition of Hybrid Automata

- The parallel composition operation on automata enable us to construct larger and more complex models from simpler automata modules
- \mathcal{A}_1 to \mathcal{A}_2 are compatible if $X_1 \cap X_2 = H_1 \cap A_2$ = $H_2 \cap A_1 = \emptyset$
- Variable names are disjoint; Action names of one are disjoint with the internal action names of the other

Composition

- For compatible \mathcal{A}_1 and \mathcal{A}_2 their composition $\mathcal{A}_1 \mid |\mathcal{A}_2$ is the structure \mathcal{A}_2 $(X, Q, \Theta, E, H, \mathcal{D}, \mathcal{T})$
- $X = X_1 \cup X_2$ (disjoint union)
- $0 \subseteq val(X)$
- $\Theta = \{ x \in Q | \forall i \in \{1,2\}: x. Xi \in \Theta_i \}$
- $H = H_1 \cup H_2$ (disjoint union)
- $E = E_1 \cup E_2$ and $A = E \cup H$
- $(x, a, x) \in \mathcal{D}$ iff

 - $a \in H_1 \text{ and } (\mathbf{x}.X_1, a, \mathbf{x}'.X_1) \in \mathcal{D}_1 \text{ and } \mathbf{x}.X_2 = \mathbf{x}.X_2$ $a \in H_2 \text{ and } (\mathbf{x}.X_2, a, \mathbf{x}'.X_2) \in \mathcal{D}_2 \text{ and } \mathbf{x}.X_1 = \mathbf{x}.X_1$ $\notin \mathsf{Else}(\mathbf{x}.X_1, a, \mathbf{x}'.X_1) \in \mathcal{D}_1 \text{ and } (\mathbf{x}.X_2, a, \mathbf{x}'.X_2) \in \mathcal{D}_2 \iff \mathsf{a} \notin \mathsf{E}, \mathsf{VE}_2$
- *T*: set of trajectories for X
 - $\tau \in \mathcal{T}$ iff $\forall i \in \{1,2\}, \tau Xi \in \mathcal{T}_i$

Theorem . A is also a hybrid automaton.

Example: Send || TimedChannel

```
Automaton Channel(b,M)
 variables: queue: Queue[M,Reals] := {}
         clock1: Reals := 0
 actions: external send(m:M), receive(m:M)
 transitions:
    send(m)
    pre true
    eff queue := append(<m, clock1+b>, queue)
    receive(m)
    pre head(queue)[1] = m
    eff queue := queue.tail
 trajectories:
    evolve d(clock1) = 1
    stop when \exists m, d, \langlem,d\rangle \in queue
         \land clock=d
```

```
Automaton PeriodicSend(u, M)
          variables: analog clock: Reals := 0
          states: True
          actions: external send(m:M)
          transitions:
                    send(m)
                    pre clock = <u>u</u>
                    eff clock := 0
          trajectories:
                    evolve d(clock) = 1
                    stop when clock=u
```

Composed Automaton

```
Automaton SC(b,u)
 variables: queue: Queue[M,Reals] := {}
        clock s, clock c: Reals := 0
 actions: external send(m:M), receive(m:M)
 transitions:
    send(m)
    pre clock s = u
    eff queue := append(<m, clock c+b>, queue); clock s := 0
    receive(m)
    pre head(queue)[1] = m
    eff queue := queue.tail
 trajectories:
    evolve d(clock_c) = 1; d(clock_s) = 1
    stop when
        (\exists m, d, <m,d> \in queue / clock_c=d)
        \/ (clock_s=u)
```

Some properties about composed automata

- Let $\mathcal{A} = \mathcal{A}_1 \mid | \mathcal{A}_2$ and let α be an execution fragment of \mathcal{A} .
 - Then $\alpha_i = \alpha (A_i, X_i)$ is an execution fragment of A_i
 - α is time-bounded iff both α_1 and $\alpha_2\,$ are time-bounded
 - α is admissible iff both α_1 and $\alpha_2\,$ are admissible
 - α is closed iff both α_1 and $\alpha_2\,$ are closed
 - α is non-Zeno iff both α_1 and α_2 are non-Zeno
 - α is an execution iff both α_1 and α_2 are executions
- Traces $_{\mathcal{A}} = \{ \boldsymbol{\beta} \mid \boldsymbol{\beta} \mid$
- See examples in the TIOA monograph

Substitutivity

• **Theorem.** Suppose \mathcal{A}_1 , \mathcal{A}_2 and \mathcal{B} have the same external interface and \mathcal{A}_1 , \mathcal{A}_2 are compatible with \mathcal{B} . If \mathcal{A}_1 implements \mathcal{A}_2 then $\mathcal{A}_1 | \underline{\mathcal{B}}$ implements $\mathcal{A}_2 | \underline{\mathcal{B}}$ Traces AIB \subseteq Traces AIB \subseteq Traces AIB • Proof sketch. AIBS AZIB Define the simulation relation: RE SAILB & SAZUR

Substutivity

- Theorem. Suppose $\mathcal{A}_1 \, \mathcal{A}_2 \, \mathcal{B}_1$ and \mathcal{B}_2 are HAs and $\mathcal{A}_1 \, \mathcal{A}_2$ have the same external actions and $\mathcal{B}_1 \, \mathcal{B}_2$ have the same external actions and $\mathcal{A}_1 \, \mathcal{A}_2$ is compatible with each of \mathcal{B}_1 and \mathcal{B}_2
- If \mathcal{A}_1 implements \mathcal{B}_1 and \mathcal{A}_2 implements \mathcal{B}_2 then $\mathcal{A}_1 \mid \mid \mathcal{B}_1$ implements $\mathcal{A}_2 \mid \mid \mathcal{B}_2$.
- Proof. $\mathcal{A}_1 \mid \mid \mathcal{B}_1$ implements $\mathcal{A}_2 \mid \mid \mathcal{B}_1$ $\mathcal{A}_2 \mid \mid \mathcal{B}_1$ implements $\mathcal{A}_2 \mid \mid \mathcal{B}_2$ By transitivity of implementation relation $\mathcal{A}_1 \mid \mid \mathcal{B}_1$ implements $\mathcal{A}_2 \mid \mid \mathcal{B}_2$

• Theorem. $\mathcal{A}_1 \mid \mid \mathcal{B}_2$ implements $\mathcal{A}_2 \mid \mid \mathcal{B}_2$ and \mathcal{B}_1 implements \mathcal{B}_2 then $\mathcal{A}_1 \mid \mid \mathcal{B}_1$ implements $\mathcal{A}_2 \mid \mid \mathcal{B}_2$.

$$\beta \in \operatorname{brace}_{A_1} || B_1$$

By (1) $\beta \lceil A_1 \in \operatorname{brace}_{A_1} \quad f \mid \beta \lceil B_1 \in \operatorname{brace}_{B_1}$
 $\beta_1 \text{ implements } B_2 \implies \beta \lceil B_1 \in \operatorname{trace}_{B_2} \in \operatorname{trace}_{B_2}$
 $B_1, B_2 \text{ same interface } \beta \lceil B_1 = \beta \lceil B_2 \in \operatorname{trace}_{B_2} B_2$
 $\beta \lceil B_2 \in \operatorname{brace}_{B_2} \quad f \mid \beta \lceil A_1 \in \operatorname{brace}_{A_1} \implies (1) \quad \beta \in \operatorname{brace}_{A_1} || B_2$

Summary

• Implementation Relation

Forward and Backward simulations

- Composition
- Substitutivity