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What we have seen so far  

• A very general modeling framework (Lynch et al.’s Hybrid 
Automata)  
– Complex discrete dynamics 
– Possibly nonlinear continuous dynamics 
– Distributed 

• General proof techniques for the above model 
– Inductive invariants for proving safety 
– Simulation relations for trace inclusion 

• Introduction to a General-purpose theorem prover (PVS) 
and examples of mechanizing proofs for state machines 
– How to model state machines in PVS 
– How to construct invariant proofs  
– Can be partially automated but requires a lot of manual work 

 
 



Next 

• Focus on specific classes of Hybrid Automata for 
which safety properties (invariants) can be 
verified completely automatically 
– Alur-Dill’s Timed Automata (Today) 
– Rectangular initializaed hybrid automata 
– Linear hybrid automata 
– … 

• Later we will look at other types of properties like 
stability, liveness, etc. 

• Abstractions and invariance are still going to be 
important 

 



Today 

• Algorithmic analysis of (Alur-Dill’s) Timed Automata 
– A restricted class of what we call hybrid automata in this course with 

only clock variables 

• Reference: Rajeev Alur and David L. Dill. A theory of timed 
automata. Theoretical Computer Science, 126:183-235, 1994.  

 

http://engr-courses.engr.illinois.edu/ece584/papers/alur_dill94.pdf
http://engr-courses.engr.illinois.edu/ece584/papers/alur_dill94.pdf


Clocks and Clock Constraints 

• A clock variable x is a continuous (analog) 
variable of type real such that along any 
trajectory 𝜏 of x, for all t ∈ 𝜏. 𝑑𝑜𝑚, 𝜏 ↓ 𝑥 𝑡 = 𝑡.  

• For a set X of clock variables, the set Φ(X) of 
integral clock constraints are expressions defined 
by the syntax: 
g ::= x ≤ 𝑞  𝑥 ≥ 𝑞  ¬ 𝑔  | 𝑔1 ∧  𝑔2   
where 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑞 ∈  ℤ 

• Examples: x = 10; x ∈ [2, 5); true are valid clock 
constraints 

• Semantics of clock constraints [𝑔] 
 



Integral Timed Automata 

• Definition. A integral timed automaton is a 
HIOA A = 〈𝑉, 𝑄, Θ, 𝐴, 𝒟, 𝒯〉 where  
– V = X ∪ 𝑙 , where 𝑋 is a set of n clocks and 𝑙 is a 

discrete state variable of finite type Ł 

– A is a finite set  

– 𝒟 is a set of transitions such that  
• The guards are described by clock constraings Φ(𝑋)  

• 𝑥, 𝑙 − 𝑎 → 𝑥′, 𝑙′  implies either 𝑥′ = 𝑥 or 𝑥 = 0 

– 𝒯 set of clock trajectories for the clock variables in 
X 

 



Example: Light switch 

• Switch can be turned on whenever at least 2 time 
units have elapsed since the last turn off. Switches 
off automatically 15 time units after the last on. 
 

automaton Switch 
• internal push; pop 
• variables 
 internal x, y:Real := 0, loc:{on,off} := off 
• transitions 
• internal push 
 pre x ≥ 2 
 eff if loc = on then y := 0 fi; x := 0; loc := off 
• internal pop 
 pre y = 15 /\ loc = off 
 eff x := 0 
• trajectories 
 invariant loc = on \/ loc = off 
 stop when y = 15 /\ loc = off 
 evolve d(x) = 1; d(y) = 1 

 

 
 
 
 
 

• An execution of Switch 



Control State (Location) Reachability 
Problem 

• Given an ITA, check if a particular location is 
reachable from the initial states 

• This problem is decidable 

• Key idea:  

– Construct a Finite State Machine that is a time-
abstract bisimilar to the ITA 

– Check reachability of FSM  

 



A Simulation Relation with a finite 
quotient 

• When two states x1 and x2 in Q behave identically? 
• x1. 𝑙𝑜𝑐 = x2.𝑙𝑜𝑐 and  
• x1 and x2 satisfy the same set of clock constraints 

– For each clock 𝑦 int(x1.𝑦) = int(x2.𝑦) or int(x1.𝑦) ≥ 𝑐𝒜𝑦 and 
int(x2.𝑦) ≥ 𝑐𝒜𝑦 

– For each clock 𝑦 with x1.𝑦 ≤ 𝑐𝒜𝑦, frac(x1.𝑦) = 0 iff 
frac(x2.𝑦) = 0 

– For any two clocks 𝑦 and 𝑧 with x1.𝑦 ≤ 𝑐𝒜𝑦 and x1.𝑦 ≤
𝑐𝒜𝑧, frac(x1.𝑦) ≤ frac(x1.𝑧) iff frac(x2.𝑦) ≤ frac(x2.𝑧) 

• Lemma. This is a equivalence relation on Q 
• The partition of Q induced by this relation is are called 

clock regions  
 



What do the clock regions look like? 

X = {y,z} 
𝑐𝒜𝑦 = 2 

𝑐𝒜𝑧 = 3 
 



Complexity 

• Lemma. The number of clock regions is 
bounded by |X|! 2|X| (2𝑐𝒜𝑧 + 2)𝑧∈𝑋 . 



Region Automaton 

• ITA (clock constants) defines the clock regions 

• Now we add the “appropriate transitions” 
between the regions to create a finite automaton 
which gives a time abstract bisimulation of the 
ITA with respect to control state reachability 

– Time successors: Consider two clock regions 𝛾 and 𝛾′, 
we say that 𝛾′ is a time successor of 𝛾 if there exits a 
trajectory of ITA starting from 𝛾 that ends in 𝛾’ 

– Discrete transitions  



Time Successors 



Example 1: Region Automata 



Example 2 



|X|! 2|X| (2𝑐𝒜𝑧 + 2)𝑧∈𝑋  



Summary 

• ITA: (very) Restricted class of hybrid automata 
– Clocks, integer constraints 

– No clock comparison, linear 

• Control state reachability 

• Alur-Dill’s algorithm  
– Construct finite bisimulation (region automaton) 

– Idea is to lump together states that behave similarly 
and reduce the size of the model 

• UPPAAL model checker based on similar model of 
timed automata 


