ECE/CS 584: Verification of Embedded Computing Systems Model Checking Timed Automata

> Sayan Mitra Lecture 09

What we have seen so far

- A very general modeling framework (Lynch et al.'s Hybrid Automata)
 - Complex discrete dynamics
 - Possibly nonlinear continuous dynamics
 - Distributed
- General proof techniques for the above model
 - Inductive invariants for proving safety
 - Simulation relations for trace inclusion
- Introduction to a General-purpose theorem prover (PVS) and examples of mechanizing proofs for state machines
 - How to model state machines in PVS
 - How to construct invariant proofs
 - Can be partially automated but requires a lot of manual work

Next

- Focus on specific classes of Hybrid Automata for which safety properties (invariants) can be verified completely automatically
 - Alur-Dill's Timed Automata (Today)
 - Rectangular initializaed hybrid automata
 - Linear hybrid automata
 - ...
- Later we will look at other types of properties like stability, liveness, etc.
- Abstractions and invariance are still going to be important

Today

- Algorithmic analysis of (Alur-Dill's) Timed Automata
 - A restricted class of what we call hybrid automata in this course with only clock variables
- Reference: Rajeev Alur and David L. Dill. <u>A theory of timed</u> <u>automata</u>. Theoretical Computer Science, 126:183-235, 1994.

Clocks and Clock Constraints

- A clock variable x is a continuous (analog) variable of type real such that along any trajectory τ of x, for all $t \in \tau$. dom, $(\tau \downarrow x)(t) = t$.
- For a set X of clock variables, the set Φ(X) of integral clock constraints are expressions defined by the syntax:

$$g ::= x \le q \mid x \ge q \mid \neg g \mid g_1 \land g_2$$

where $x \in X$ and $q \in \mathbb{Z}$

- Examples: x = 10; x ∈ [2, 5); true are valid clock constraints
- Semantics of clock constraints [g]

Integral Timed Automata

- **Definition.** A **integral timed automaton** is a HIOA A = $\langle V, Q, \Theta, A, \mathcal{D}, \mathcal{T} \rangle$ where
 - $V = X \cup \{l\}$, where X is a set of n clocks and l is a discrete state variable of finite type Ł
 - A is a finite set
 - ${\mathcal D}$ is a set of transitions such that
 - The guards are described by clock constraings $\Phi(X)$
 - $\langle x, l \rangle a \rightarrow \langle x', l' \rangle$ implies either x' = x or x = 0
 - ${\mathcal T}$ set of clock trajectories for the clock variables in ${\bf X}$

Example: Light switch

• Switch can be turned on whenever at least 2 time units have elapsed since the last turn off. Switches off automatically 15 time units after the last on.

automaton Switch

- internal push; pop
- variables

internal x, y:Real := 0, loc:{on,off} := off

- transitions
- internal push

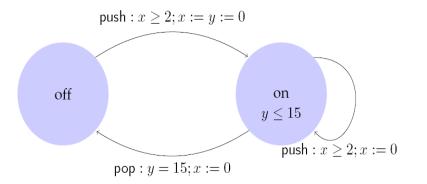
pre $x \ge 2$ eff if loc = on then y := 0 fi; x := 0; loc := off

• internal pop

pre y = $15 \land loc = off$ eff x := 0

• trajectories

invariant loc = on \setminus loc = off stop when y = 15 / loc = off evolve d(x) = 1; d(y) = 1



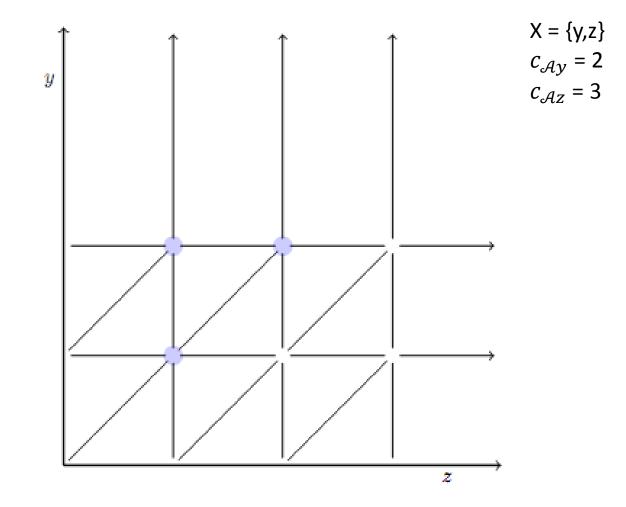
Control State (Location) Reachability Problem

- Given an ITA, check if a particular location is reachable from the initial states
- This problem is decidable
- Key idea:
 - Construct a Finite State Machine that is a timeabstract bisimilar to the ITA
 - Check reachability of FSM

A Simulation Relation with a finite quotient

- When two states **x**₁ and **x**₂ in Q behave identically?
- $\mathbf{x_1} \cdot loc = \mathbf{x_2} \cdot loc$ and
- **x**₁ and **x**₂ satisfy the same set of clock constraints
 - For each clock y int $(\mathbf{x_1}.y) = int(\mathbf{x_2}.y)$ or $int(\mathbf{x_1}.y) \ge c_{\mathcal{A}y}$ and $int(\mathbf{x_2}.y) \ge c_{\mathcal{A}y}$
 - For each clock y with $\mathbf{x_1} \cdot y \le c_{\mathcal{A}y}$, frac $(\mathbf{x_1} \cdot y) = 0$ iff frac $(\mathbf{x_2} \cdot y) = 0$
 - For any two clocks y and z with $\mathbf{x_1} \cdot y \leq c_{Ay}$ and $\mathbf{x_1} \cdot y \leq c_{Az}$, frac $(\mathbf{x_1} \cdot y) \leq$ frac $(\mathbf{x_1} \cdot z)$ iff frac $(\mathbf{x_2} \cdot y) \leq$ frac $(\mathbf{x_2} \cdot z)$
- Lemma. This is a equivalence relation on Q
- The partition of Q induced by this relation is are called clock regions

What do the clock regions look like?



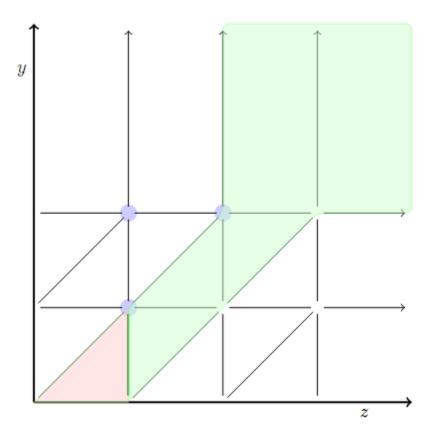
Complexity

• Lemma. The number of clock regions is bounded by $|X|! 2^{|X|} \prod_{z \in X} (2c_{Az} + 2)$.

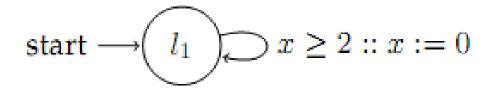
Region Automaton

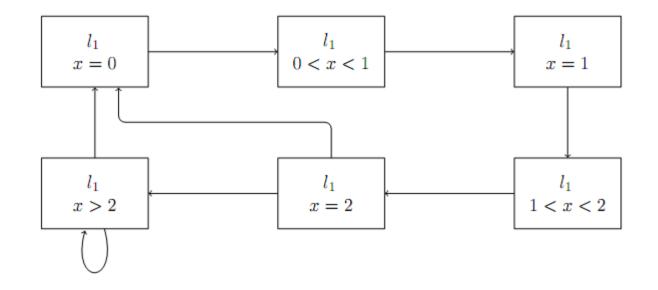
- ITA (clock constants) defines the clock regions
- Now we add the "appropriate transitions" between the regions to create a finite automaton which gives a time abstract bisimulation of the ITA with respect to control state reachability
 - Time successors: Consider two clock regions γ and γ', we say that γ' is a time successor of γ if there exits a trajectory of ITA starting from γ that ends in γ'
 - Discrete transitions

Time Successors

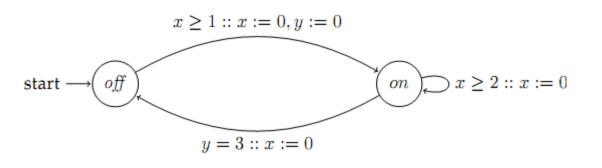


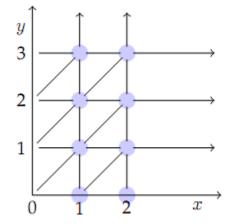
Example 1: Region Automata

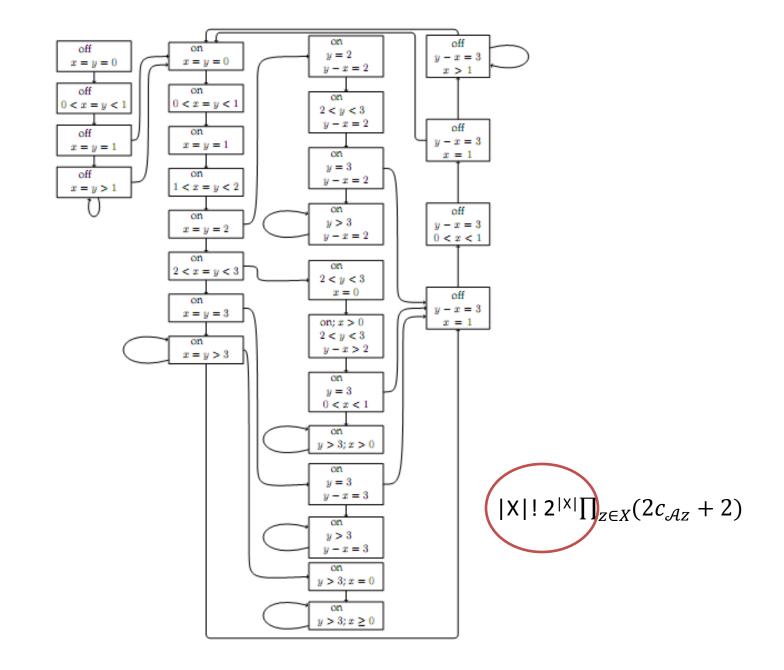




Example 2







Summary

- ITA: (very) Restricted class of hybrid automata
 - Clocks, integer constraints
 - No clock comparison, linear
- Control state reachability
- Alur-Dill's algorithm
 - Construct finite bisimulation (region automaton)
 - Idea is to lump together states that behave similarly and reduce the size of the model
- UPPAAL model checker based on similar model of timed automata