ECE/CS 584: Verification of Embedded Computing Systems Timed to Hybrid Automata

Sayan Mitra Lecture 10

Announcements

- HW2 released
 - start soon

Last lecture

- Focus on specific classes of Hybrid Automata for which safety properties (invariants) can be verified completely automatically
 - Alur-Dill's Integral Timed Automata (ITA)
 - Control State Reachability (CSR) problem
 - Construction of Region Automaton (FSM)
- Today
 - How far can we generalize ITAs while preserving decidability of CSR

Clocks and Rational Clock Constraints

- A clock variable x is a continuous (analog) variable of type real such that along any trajectory τ of x, for all $t \in \tau$. dom, $(\tau \downarrow x)(t) = t$.
- For a set X of clock variables, the set Φ(X) of integral clock constraints are expressions defined by the syntax:

 $g ::= x \le q \mid x \ge q \mid \neg g \mid g_1 \land g_2$ where $x \in X$ and $q \in \mathbb{Q}$

- Examples: x = 10.125; x ∈ [2.99, 5); true are valid rational clock constraints
- Semantics of clock constraints [g]

Step 1. Rational Timed Automata

- **Definition.** A rational timed automaton is a HIOA A = $\langle V, Q, \Theta, A, D, T \rangle$ where
 - V = X U {loc}, where X is a set of n clocks and l is a discrete state variable of finite type Ł
 - A is a finite set
 - ${\mathcal D}$ is a set of transitions such that
 - The guards are described by rational clock constraings $\Phi(X)$
 - $\langle x, l \rangle a \rightarrow \langle x', l' \rangle$ implies either x' = x or x = 0
 - ${\mathcal T}$ set of clock trajectories for the clock variables in X

Example: Rational Light switch

• Switch can be turned on whenever at least 2.25 time units have elapsed since the last turn off. Switches off automatically 15.5 time units after the last on.

automaton Switch

- internal push; pop
- variables

internal x, y:Real := 0, loc:{on,off} := off

- transitions
- internal push

pre $x \ge 2.25$ eff if loc = on then y := 0 fi; x := 0; loc := off

• internal pop

```
pre y = 15.5 /\ loc = off
eff x := 0
```

• trajectories

invariant loc = on \setminus loc = off stop when y = 15.5 /\ loc = off evolve d(x) = 1; d(y) = 1

Control State (Location) Reachability Problem

- Given an RTA, check if a particular location is reachable from the initial states
- Is problem is decidable?
- Key idea:
 - Construct a ITA that is bisimilar to the given RTA
 - Check CSR for ITA

Construction of ITA from RTA

- Multiply all rational constants by a factor q that make them integral
- Make d(x) = q for all the clocks
- RTA Switch is bisimilar to ITA Iswitch
- Simulation relation R is given by (**u**,**s**) ∈ R iff **u**.x = 4 **s**.x and **u**.y = 4 **s**.y

automaton ISwitch

- internal push; pop
- variables

internal x, y:Real := 0, loc:{on,off} := off

- transitions
- internal push

pre $x \ge 9$ eff if loc = on then y := 0 fi; x := 0; loc := off

• internal pop

pre y = 62 /\ loc = off **eff** x := 0

• trajectories

invariant loc = on \setminus loc = off stop when y = 62 / loc = off evolve d(x) = 4; d(y) = 4

Step 2. Multi-Rate Automaton

- **Definition.** A **multirate automaton** is a HIOA A = $\langle V, Q, \Theta, A, D, T \rangle$ where
 - V = X U {loc}, where X is a set of n continuous
 variables and loc is a discrete state variable of finite
 type Ł
 - A is a finite set
 - $\ensuremath{\mathcal{D}}$ is a set of transitions such that
 - The guards are described by rational clock constraings $\Phi(X)$
 - $\langle x, l \rangle a \rightarrow \langle x', l' \rangle$ implies either x' = c
 - ${\mathcal T}$ set of trajectories such that for each
 - $x \in X \exists k \text{ such that } \tau \in \mathcal{T}, t \in \tau. dom$

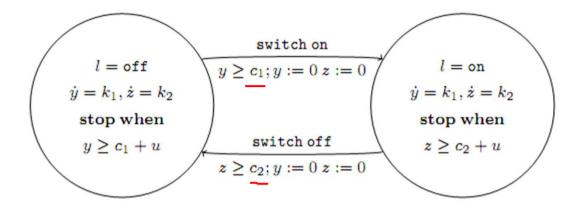
 $\tau(t). x = \tau(0). x + k t \qquad d(x) = k \dot{x} = k$

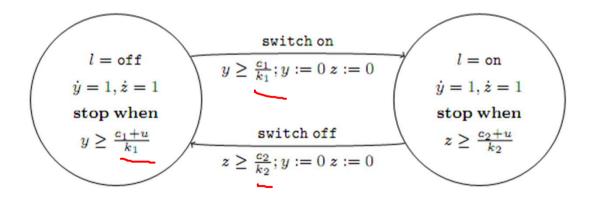
Control State (Location) Reachability Problem

- Given an MRA, check if a particular location is reachable from the initial states
- Is problem is decidable?
- Key idea:

- Construct a RTA that is bisimilar to the given MRA

Example





Step 3. Initialized Rectangular HA

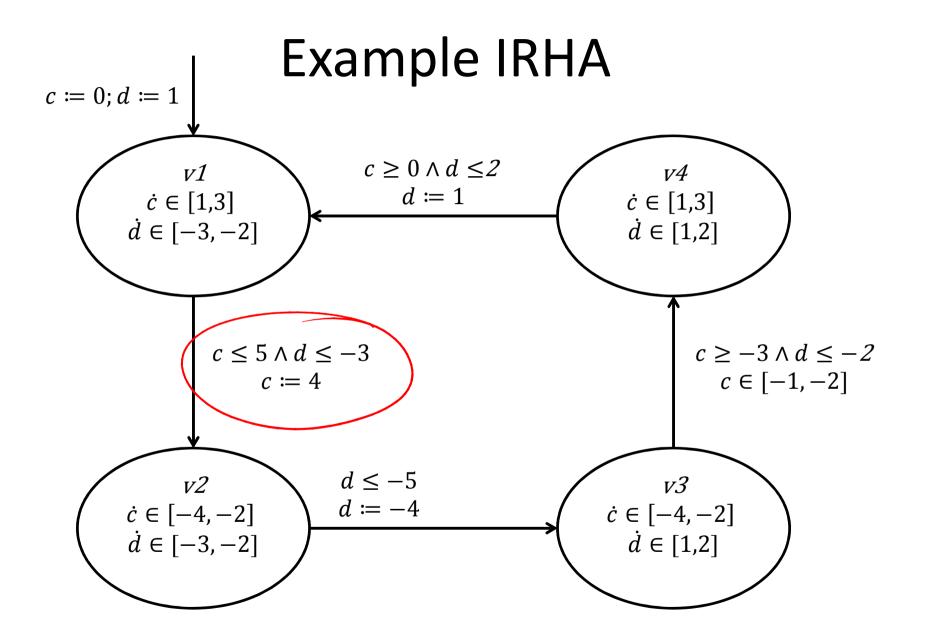
- **Definition.** An **initialized rectangular hybrid automaton** (IRHA) is a HIOA A = $\langle V, Q, \Theta, A, D, T \rangle$ where
 - − V = X ∪ {loc}, where X is a set of n continuous variables and loc is a discrete state variable of finite type Ł
 - A is a finite set
 - $\,\mathcal{D}$ is a set of transitions such that
 - The guards are described by rational clock constraings $\Phi(X)$
 - $\langle x, l \rangle a \rightarrow \langle x', l' \rangle$ implies
 - If the dynamics of x changes from l to l' then $x \in [a, b]$
 - Otherwise x' = x
 - ${\mathcal T}$ set of trajectories such that for each
 - $l \in L, x_i \in X, \ \dot{x_i} \in [a_{il}, b_{il}]$

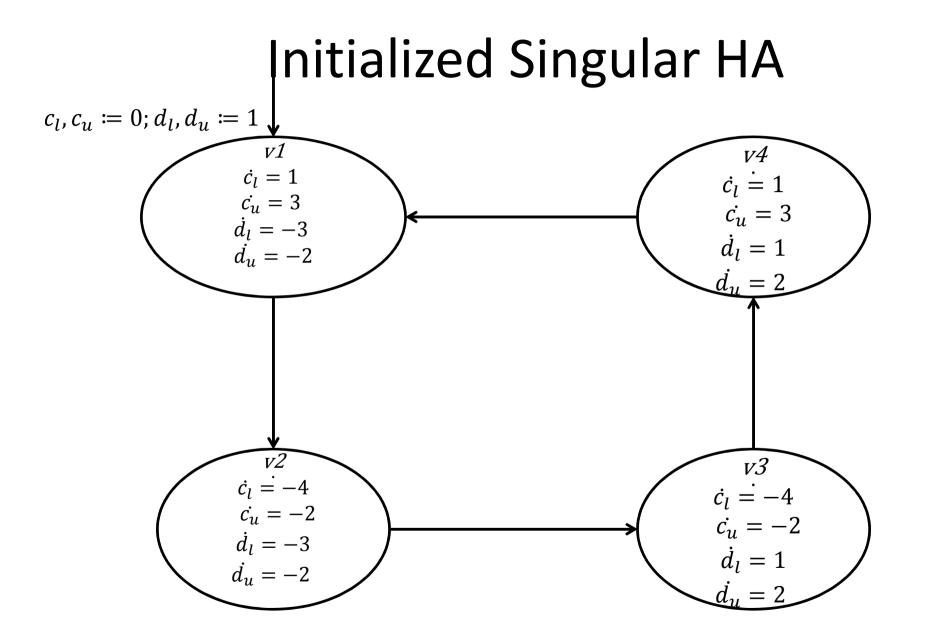
That is, for any $\tau \in \mathcal{T}$, $t \in \tau$. dom

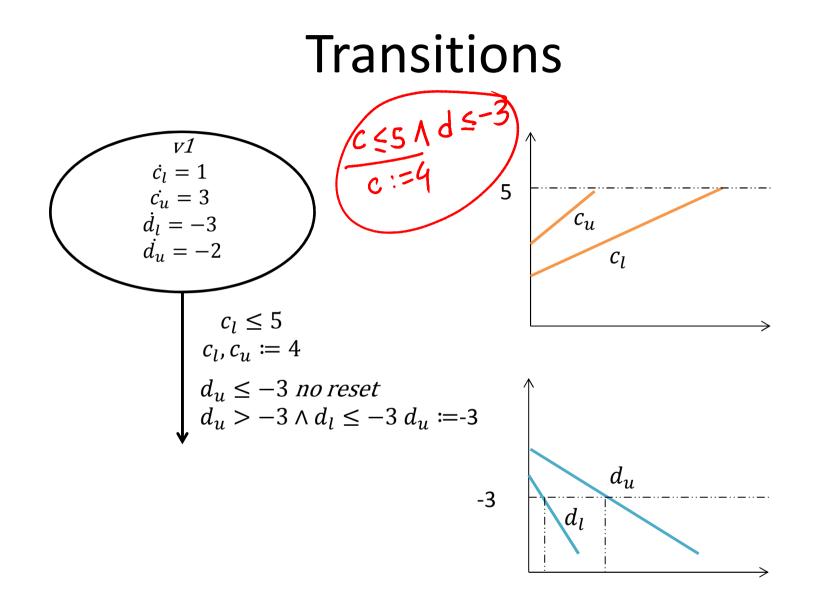
 $\tau(0). x_i + a_{il} t \le \tau(t). x_i \le \tau(0). x_i + b_{il} t$

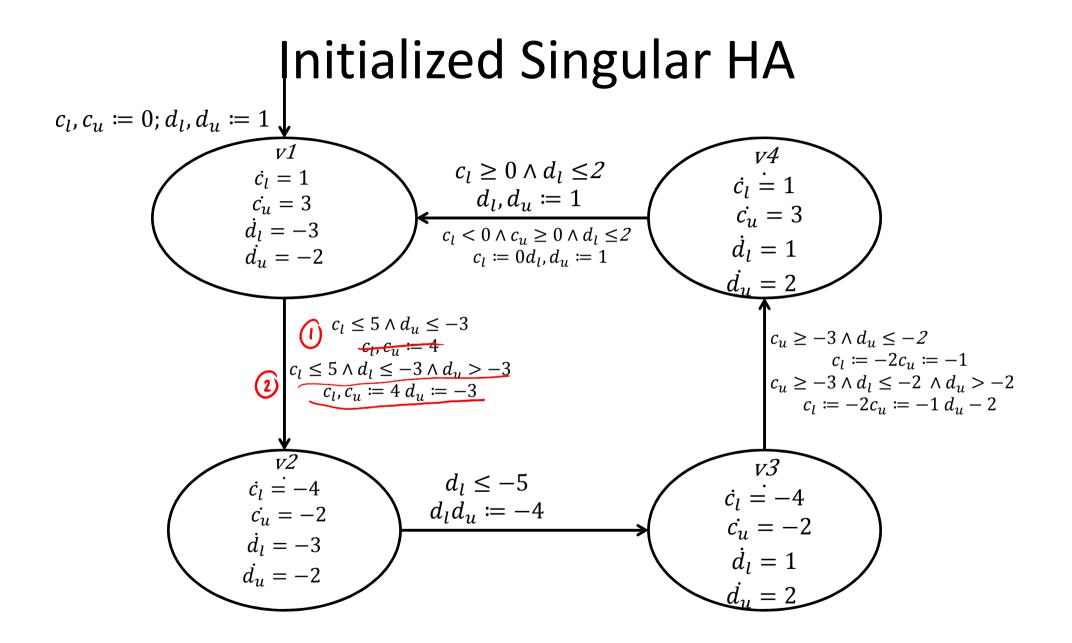
CSR Decidable for IRHA?

- Given an IRHA, check if a particular location is reachable from the initial states
- Is problem is decidable?
- Key idea:
 - Construct a 2n-dimensional initialized Singular automaton (Multi-rate automaton) that is bisimilar to the given IRHA
 - Construct a ITA that is bisimilar to the Singular TA





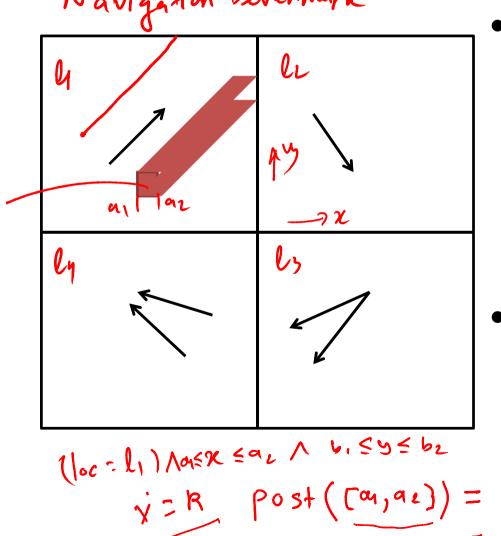




Can this be further generalized ?

- For initialized Rectangular HA, control state reachability is decidable
 - Can we drop the initialization restriction?
 - Can we drop the rectangular restriction?
 - Tune in in a week

Reachability Computation with polyhedra Navigation benchmyk



- A set of states is represented by disjunction of linear inequalities
 - $(loc = l_1 \land A_1 x \le b_1) \lor$ $(loc = l_2 \land A_2 x \le b_2) \lor$...
- Post(,) computation performed symbolically using quantifier elimination

$$\exists t \quad [\alpha_1 + k t, \alpha_2 + k t]$$
$$[\alpha_1, ob]$$

Summary

- ITA: (very) Restricted class of hybrid automata
 - Clocks, integer constraints
 - No clock comparison, linear
- Control state reachability with Alur-Dill's algorithm (region automaton construction)
- Rational coefficients
- Multirate Automata
- Initialized Rectangular Hybrid Automata
- HyTech, PHAVer use polyhedral reachability computations