Plan

- Arerage lwell time therem for AS of switched syptems

$$
\begin{aligned}
& \dot{x}=f_{i}(x) \quad i \in I \\
& \sigma:[0, \infty) \rightarrow I
\end{aligned}
$$

switched k suptem $\dot{x}=f_{\sigma(t)}(x)$

$-(1)$
\# Extra switches
Def Average Dwell Time (ADT) σ has ADT $\tau_{a}>0$ iff

$$
\begin{aligned}
& \text { has ADT } \tau_{a}>0 \text { iff } \\
& \exists N_{0} \in \mathbb{N} \text { o.t } \forall t_{l} T>0 \quad N_{\sigma}(t, T) \leqslant N_{0}+\frac{T-t}{\tau_{a}}
\end{aligned}
$$

$$
\sigma
$$

Thm (1) $\forall i \in \mathcal{I}, \exists \nu_{i}!\mathbb{R}^{n} \rightarrow \mathbb{R}$ n.t $\dot{\nu}_{i} \leqslant-2 \lambda_{0} V_{i}$

$$
\frac{\partial V_{i}}{\partial x} f_{i}(x) \leqslant-2 \lambda_{\hat{i}} V_{i}(x(t))
$$

$$
\begin{aligned}
{ }^{\circ} & \leqslant 0 \\
& <0
\end{aligned}
$$

(2) $\exists \mu>0$ o.t $\forall i, j \in I \quad \forall x \in \mathbb{R}^{2}$

$$
\nu_{i}(x) \leqslant M \nu_{j}(x)
$$

(3) $\exists \alpha_{1} \alpha_{2}: \mathbb{R} \rightarrow \mathbb{R}$ monotonic, positive definite
(3) $\exists \alpha_{1} \alpha_{2}: \mathbb{R} \rightarrow \mathbb{R}$ monotonic, positive definite

Then (1) is GAS.
Proof Sketch fix a switching signal σ satisfies (4). fix time T Switching times $t_{1} t_{2} \ldots t_{N_{6}}(0, T)$
1)efine aux for

$\left.W(t)=e^{2 x_{0} t}\right)_{\sigma(t)}(x(t)) \leqslant$ piecewise differentiable

$$
\begin{aligned}
& \dot{W}(t)=e^{2} V_{\sigma(t)} \\
& \dot{W}=2 \lambda_{0} e^{2 \lambda_{0} t} \nu_{\sigma(t)}(x(t))+e^{2 \lambda_{0} t} \nu_{\sigma(t)}(x(t)) \text { [} \begin{array}{l}
\text { between } \\
\text { switching }
\end{array} \text { times }
\end{aligned}
$$

$$
\leq \frac{\left.\leq 2 \lambda_{0} e^{2 \lambda_{0} t} V_{\sigma(t)}(x(t))-2 \lambda_{0} e^{2 \lambda_{0} t} \nu_{\sigma(t)}(x(t))\right)}{W(t)}
$$

$$
\left.=M e^{2 x_{0} E_{k+1}^{-}}\right) \ldots\left(x\left(E_{k+1}^{-}\right)\right)
$$

$$
=\mu W\left(t_{k+1}^{-}\right)^{\sigma\left(t_{\bar{k}+1}\right)}
$$

$\leqslant \mu W\left(t_{k}\right)$ as W is non increasing between switches
$W(\bar{T}) \leqslant M^{N_{\sigma}(0, T)} W(0)$ by induction

$$
\begin{aligned}
e^{2 \lambda_{0} T} V_{\sigma\left(T^{-}\right)}(x(T)) & \leqslant \mu^{N_{\sigma}(T, 0)} V_{\sigma(0)}(x(0)) \\
V_{\sigma(T)}(x(T)) & \leqslant e^{-2 x_{0} T+N_{\sigma}(T, 0) \log \mu} V_{\sigma(0)}(x(0)) \\
& \left.\leqslant e^{-2 \lambda_{0} T+\log \mu\left(N N_{0}\right.}+\frac{T}{N_{a}}\right) V_{\sigma(0)}(x(0)) \\
& \left.\leqslant e^{-2 \lambda_{0} T+\log \mu \cdot \frac{T}{\tau_{a}}} \mu^{N_{0}} V_{V_{\sigma(0)}(x(0))}^{V_{0}+\frac{T}{Y}}\right) \\
& \leqslant e^{T\left(\frac{\log \mu}{\tau_{4}}-2 \lambda_{0}\right)} C
\end{aligned}
$$

if $\tau_{a} \geqslant \frac{\log \mu}{2 x_{0}}$ the exponent is - re
as $T \rightarrow \infty \quad V_{\sigma\left(T^{-}\right)}(x(T)) \rightarrow 0$

$$
.1,-\lambda T \text {, No ir ... } x(0)) \text { for same } \lambda \in(0,1)
$$

$$
\begin{aligned}
& V_{\sigma(T)} \leqslant e^{-\lambda 1} \mu^{N_{0}} V_{\sigma(0)}(x(0)) \text { for same } \lambda \in(0,1) \\
& |x(T)| \leqslant \alpha_{1}^{-1}\left(\mu^{N_{0}} e^{-\lambda T} \alpha_{2}(x(0))\right) \text { 目 } \\
& \hline 1
\end{aligned}
$$

Applications

- Stability analysis
(i) Show stability f individual modes
(ii) Show system has ADT or satisfies MLF
- Designing Stable system

Snalo indebendenden hoplevesis switching / /..I

Scale independendex hysteresis switching

Adaptive control

$$
\begin{aligned}
& \dot{\mu}_{1}=a \mu_{1} \\
& \dot{\mu}_{2}=0
\end{aligned}
$$

$$
\dot{\mu}_{2}=a \mu_{2}
$$

$$
\dot{\mu}_{1}=0
$$

individual modes are stable

