CEGAR: Counterexample-guided Abstraction Refinement

Sayan Mitra Slides from Pavithra Prabhakar

ECE/CS 584: Embedded System Verification

November 13, 2012

- Finite State Systems: Abstraction
- Refinement
- CEGAR
 - Validation
 - Refinment based on counterexample analysis
- Cegar for Hybrid Systems

A B + A B +

э

Finite state system (FSS) \mathcal{T}

- Q finite set of states
- Σ transition labels
- q^{init} initial state
- $\bullet \ {\rightarrow} \subseteq {\it Q} \times \Sigma \times {\it Q} \ {\rm transition \ function}$

A B M A B M

Definition

Let \mathcal{T}_1 and \mathcal{T}_2 be two *FSSs*. \mathcal{T}_2 is an *abstraction* of \mathcal{T}_1 if there exists a function $\alpha : Q_1 \to Q_2$ such that $\alpha(q_1^{init}) = q_2^{init}$ and for every $q_1 \stackrel{a}{\to}_1 q_2$, $\alpha(q_1) \stackrel{a}{\to}_2 \alpha(q_2)$.

Notation: $\mathcal{T}_1 \prec \mathcal{T}_2$. Given an equivalence relation $\sim \subseteq Q_1 \times Q_1$, define an abstraction $\mathcal{T}_2 = \mathcal{T}_1 / \sim$ of \mathcal{T}_1 as follows:

• $Q_2 = Q_1 / \sim$ • $q_2 \stackrel{a}{\rightarrow}_2 q'_2$ if there exists $q_1 \in q_2$ and $q'_1 \in q'_2$ such that $q_1 \stackrel{a}{\rightarrow}_1 q'_1$.

Example

ヨッ イヨッ イヨッ

• Why do we want/need to abstract?

∃ → < ∃</p>

- Why do we want/need to abstract? To obtain "simpler" systems
- Does an abstraction preserve all properties?

- Why do we want/need to abstract? To obtain "simpler" systems
- Does an abstraction preserve all properties?
 - No. It preserves certain properties.
 - Example: If the abstraction is safe, then the original system is safe.
- Can an abstraction always prove the safety of a safe system?

- Why do we want/need to abstract? To obtain "simpler" systems
- Does an abstraction preserve all properties?
 - No. It preserves certain properties.
 - Example: If the abstraction is safe, then the original system is safe.
- Can an abstraction always prove the safety of a safe system? No. It might not be the right abstraction.
- How do we search for a "right" abstraction?

- Why do we want/need to abstract? To obtain "simpler" systems
- Does an abstraction preserve all properties?
 - No. It preserves certain properties.
 - Example: If the abstraction is safe, then the original system is safe.
- Can an abstraction always prove the safety of a safe system? No. It might not be the right abstraction.
- How do we search for a "right" abstraction? Refinement!

Definition

Let \mathcal{T}_1 be a *FSS* and \mathcal{T}_2 its abstraction. A *refinement* of \mathcal{T}_2 is an *FSS* \mathcal{T}_3 such that $\mathcal{T}_1 \prec \mathcal{T}_3 \prec \mathcal{T}_2$.

Example

伺 と く ヨ と く ヨ と

Definition

Let \mathcal{T}_1 be a *FSS* and \mathcal{T}_2 its abstraction. A *refinement* of \mathcal{T}_2 is an *FSS* \mathcal{T}_3 such that $\mathcal{T}_1 \prec \mathcal{T}_3 \prec \mathcal{T}_2$.

Example How do we refine? One approach - CEGAR

• = • • = •

Counter-example guided abstraction refinement

- Reachability problem: Given a state q_f, is it reachable from the initial state of T₁?
- Construct an abstraction \mathcal{T}_2 .
 - Model check \mathcal{T}_2 : Is $\alpha(q_f)$ is reachable from the initial state of \mathcal{T}_2 ?
 - Answer no $\Rightarrow \mathcal{T}_1$ is safe.
 - Answer yes \Rightarrow don't know.
 - If yes, returns a path in *T*₂ which reaches α(q₂) abstract counter-example.
 - Check if the abstract counter-example has a corresponding concrete counter-example validation
 - If yes, you have found a counter-example, and can conclude that the system is unsafe.
 - Otherwise, abstract counter-example is "spurious".
 - Use it to refine the abstraction.

伺 ト く ヨ ト く ヨ ト

CEGAR loop

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

$$\sigma' = q'_1 \stackrel{a_1}{\to} _2 q'_2 \stackrel{a_2}{\to} _2 q'_3 \stackrel{a_3}{\to} \cdots \stackrel{a_k}{\to} q'_{k+1}: \text{ counter-example in } \mathcal{T}_2.$$

Definition

Validation: Does there exist $\sigma = q_1 \xrightarrow{a_1} q_2 q_2 \xrightarrow{a_2} q_3 \xrightarrow{a_3} \cdots \xrightarrow{a_k} q_{k+1}$ in \mathcal{T}_1 such that $q_1 = q_1^{init}$, $q_{k+1} = q_f$ and $\alpha(q_i) = q'_i$ for all *i*?

$$\sigma' = q'_1 \stackrel{a_1}{\to} _2 q'_2 \stackrel{a_2}{\to} _2 q'_3 \stackrel{a_3}{\to} \cdots \stackrel{a_k}{\to} q'_{k+1}: \text{ counter-example in } \mathcal{T}_2.$$

Definition

Validation: Does there exist $\sigma = q_1 \xrightarrow{a_1} q_2 q_2 \xrightarrow{a_2} q_3 \xrightarrow{a_3} \cdots \xrightarrow{a_k} q_{k+1}$ in \mathcal{T}_1 such that $q_1 = q_1^{init}$, $q_{k+1} = q_f$ and $\alpha(q_i) = q'_i$ for all *i*?

Validation procedure

For $1 \leq i \leq k+1$, compute $Reach_i$: set of all states which can "mimic" $q'_i \stackrel{a_i}{\to} \cdots \stackrel{a_k}{\to} q'_{k+1}$ and reach q_f .

•
$$Reach_{k+1} = \{q_f\}.$$

• $Reach_i = \alpha^{-1}(q'_i) \cap Pre(Reach_{i+1}, a_i)$ for $1 \le i \le k$.

Proposition

Concrete σ exists iff Reach₀ $\neq \emptyset$.

- 4 B b 4 B b

 Let j be the largest integer such that Reach_j = Ø, i.e., first set in the backward computation which becomes empty.

•
$$Post(\alpha^{-1}(q'_i)) \cap Reach_{j+1} = \emptyset.$$

- Split q'_{j+1} into two states, such that one contains *Post*(α⁻¹(q'_j)) and the other contains *Reach_{j+1}*.
- This is the new abstraction \mathcal{T}_3 .

CEGAR used in software verification

- Clarke et. al
- Microsoft research: SLAM, boolean programs
- Abstraction mechanisms: Predicate abstraction

Review of CEGAR algorithm

伺 と く ヨ と く ヨ と

 $\mathcal{H} = (Loc, q_0, edges, Cont, Cont_0, flow, invariant, guard, reset):$

- Loc finite set of locations,
- $\ell_0 \in Loc$ initial location,
- $edges \subseteq Loc \times Loc$,
- $Cont = \mathbb{R}^n$ set of continuous states,
- $Cont_0 \subseteq Cont$ initial continuous states,
- flow : Loc \times Cont \rightarrow ($\mathbb{R}_+ \rightarrow$ Cont),
- invariant : Loc $\rightarrow 2^{Cont}$,
- guard : $edges \rightarrow 2^{Cont}$, and
- reset : edges $\rightarrow 2^{Cont \times Cont}$.

Example: thermostat

•
$$Loc = \{off, on\},\$$

• $\ell_0 = off,\$
• $edges = \{(off, on), (on, off)\},\$
• $Cont = \mathbb{R},\$
• $Cont_0 = \{20\},\$
• $flow(off, x, t) = xe^{-0.1t}$ and $flow(on, x, t) = \cdots,\$
• $invariant(off) = \{x \mid x \ge 18\}$ and $invariant(on) = \cdots,\$
• $guard(off, on) = \{x \mid x < 19\}$ and $guard(on, off) = \cdots,\$ and
• $reset(off, on) = reset(on, off) = \{(x, x) \mid x \in \mathbb{R}\}.\$

$[\![\mathcal{H}]\!] = (Q, \Sigma, q^{\textit{init}}, \rightarrow):$

- $Q = Loc \times Cont$,
- $\Sigma = Actions \cup \{\tau\},\$
- $q^{init} = \{q_0\} \times Cont_0$.
- $(\ell, x) \rightarrow_a (\ell', x')$:
 - Discrete transitions: $a \in Actions$,
 - Continuous transitions: $a = \tau$.

Discrete transitions

$$(\ell_1, x_1) \rightarrow_a (\ell_2, x_2)$$
 iff $\exists edge = (\ell_1, a, \ell_2)$:

- $x_1 \in guard(edge)$, and
- $(x_1, x_2) \in reset(edge)$.

э

Semantics of HA

Continuous transitions

$$(\ell_1, x_1) \rightarrow_{\tau} (\ell_2, x_2)$$
 iff

- $\ell_1 = \ell_2$,
- $\exists t \text{ such that } flow(\ell_1, x_1)(t) = x_2$, and for all $t' \in [0, t]$, $flow(\ell_1, x_1)(t') \in invariant(\ell_1)$.

伺 と く ヨ と く ヨ と

Definition

Let \mathcal{H}_1 and \mathcal{H}_2 be two *HSs*. \mathcal{H}_2 is an *abstraction* of \mathcal{H}_1 if there exists a function $\alpha : Q_1 \to Q_2$ such that $\alpha(q_1^{init}) = q_2^{init}$ and for every $q_1 \stackrel{a}{\to}_1 q_2$, $\alpha(q_1) \stackrel{a}{\to}_2 \alpha(q_2)$.

Definition

Let \mathcal{H}_1 and \mathcal{H}_2 be two *HSs*. \mathcal{H}_2 is an *abstraction* of \mathcal{H}_1 if there exists a function $\alpha : Q_1 \to Q_2$ such that $\alpha(q_1^{init}) = q_2^{init}$ and for every $q_1 \stackrel{a}{\to}_1 q_2$, $\alpha(q_1) \stackrel{a}{\to}_2 \alpha(q_2)$.

- Finite partition of the state space
- Construct the transitions time transitions and discrete transitions

• Defining the partition - by linear constraints, polynomial constraints, ellipsoids etc.

A B + A B +

э

- Defining the partition by linear constraints, polynomial constraints, ellipsoids etc.
- Computing discrete transitions computing weakest preconditions, intersections.

•
$$P \stackrel{a}{\rightarrow} P'$$
 iff $Pre(P', a) \cap P \neq \emptyset$.

• • = • • = •

- Defining the partition by linear constraints, polynomial constraints, ellipsoids etc.
- Computing discrete transitions computing weakest preconditions, intersections.

• $P \stackrel{a}{\rightarrow} P'$ iff $Pre(P', a) \cap P \neq \emptyset$.

- Computing time transitions computing time predecessors, intersections.
 - Depends on the continuous dynamics
 - $P \xrightarrow{\tau} P'$ iff $\cup_t Pre(P', t) \cap P \neq \emptyset$.

- Defining the partition by linear constraints, polynomial constraints, ellipsoids etc.
- Computing discrete transitions computing weakest preconditions, intersections.

• $P \xrightarrow{a} P'$ iff $Pre(P', a) \cap P \neq \emptyset$.

- Computing time transitions computing time predecessors, intersections.
 - Depends on the continuous dynamics
 - $P \xrightarrow{\tau} P'$ iff $\cup_t Pre(P', t) \cap P \neq \emptyset$.
 - Often can only compute an approximation of $\cup_t Pre(P', t)$.
 - But still an abstraction!

ヨッ イヨッ イヨッ

CEGAR loop

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

$$\sigma' = q'_1 \stackrel{a_1}{\to} _2 q'_2 \stackrel{a_2}{\to} _2 q'_3 \stackrel{a_3}{\to} \cdots \stackrel{a_k}{\to} q'_{k+1}$$
: counter-example in \mathcal{T}_2 .

Validation procedure

For $1 \leq i \leq k+1$, compute $Reach_i$: set of all states which can "mimic" $q'_i \xrightarrow{a_i} \cdots \xrightarrow{a_k} q'_{k+1}$ and reach q_f .

- $Reach_{k+1} = \{q_f\} \times inv(q_f).$
- $Reach_i = \alpha^{-1}(q'_i) \cap Pre(Reach_{i+1}, a_i)$ for $1 \le i \le k$.

$$\sigma' = q'_1 \stackrel{a_1}{\to} _2 q'_2 \stackrel{a_2}{\to} _2 q'_3 \stackrel{a_3}{\to} \cdots \stackrel{a_k}{\to} q'_{k+1}$$
: counter-example in \mathcal{T}_2 .

Validation procedure

For $1 \leq i \leq k+1$, compute $Reach_i$: set of all states which can "mimic" $q'_i \xrightarrow{a_i} \cdots \xrightarrow{a_k} q'_{k+1}$ and reach q_f .

- $Reach_{k+1} = \{q_f\} \times inv(q_f).$
- $Reach_i = \alpha^{-1}(q'_i) \cap Pre(Reach_{i+1}, a_i)$ for $1 \le i \le k$.
- Cannot compute Reach_i exactly.
- What do we do?

$$\sigma' = q'_1 \stackrel{a_1}{\to} _2 q'_2 \stackrel{a_2}{\to} _2 q'_3 \stackrel{a_3}{\to} \cdots \stackrel{a_k}{\to} q'_{k+1}$$
: counter-example in \mathcal{T}_2 .

Validation procedure

For $1 \leq i \leq k+1$, compute $Reach_i$: set of all states which can "mimic" $q'_i \xrightarrow{a_i} \cdots \xrightarrow{a_k} q'_{k+1}$ and reach q_f .

- $Reach_{k+1} = \{q_f\} \times inv(q_f).$
- $Reach_i = \alpha^{-1}(q'_i) \cap Pre(Reach_{i+1}, a_i)$ for $1 \le i \le k$.
- Cannot compute Reach_i exactly.
- What do we do?
 - If validation fails, i.e., $Reach_k = \emptyset$ for some k, continue to the refinement step.
 - Otherwise, use better *Pre* computation. (After sometime, give up!)
 - If $Reach_0 \neq \emptyset$, cannot conclude anything. But can only conjecture that the design is probably not good.

高 とう きょう く ほ とう ほう

- Let k be the largest integer such that Reach_k = Ø, i.e., first set in the backward computation which becomes empty.
- $Post(\alpha^{-1}(q'_i)) \cap Reach_{k+1} = \emptyset.$
- Split q'_{k+1} into two states, such that one contains $Post(\alpha^{-1}(q'_i))$ and the other contains $Reach_{k+1}$.
- This is the new abstraction \mathcal{T}_3 .
- Add some constraint that splits the two sets of states.
- Alur et. al find separating predicates for polyhedra.

- Need not terminate, unlike for the finite state case.
- Even upon termination due to validation of a counter-example, cannot conclude that the system is erroneous (due to overapproximations).
- In general, computing abstractions is expensive.

Main concept

Abstract a hybrid automaton by another "simpler" hybrid automaton.

A B + A B +

Main concept

Abstract a hybrid automaton by another "simpler" hybrid automaton.

- Constructing abstractions may be easier, example, approximating a linear system by a rectangular system.
- Need different refinement methods.
- Hybrid Automata based CEGAR for rectangular hybrid automata complete for the initialized fragment.

- $\alpha_{Loc}: Loc_1 \rightarrow Loc_2.$
- α_{edges} : $edges_1 \rightarrow edges_2$.
- $\alpha_{Var} : \mathbb{R}^{|Var_1|} \to \mathbb{R}^{|Var_2|}.$

•
$$\alpha_{Loc} : Loc_1 \rightarrow Loc_2.$$

• $\alpha_{edges} : edges_1 \rightarrow edges_2.$
• $\alpha_{Var} : \mathbb{R}^{|Var_1|} \rightarrow \mathbb{R}^{|Var_2|}.$

Example:

- x_1, x_2, x_3 variables in \mathcal{H}_1 .
- z_1, z_2 variables in \mathcal{H}_2 .

•
$$\alpha_{Var}(z_1) = x_1 + 3x_2$$

• $\alpha_{Var}(z_2) = x_1 - x_3$

• • = • • = •

э

CEGAR for rectangular hybrid automata

- Abstract a rectangular hybrid automata by another hybrid automata.
- Example

CEGAR for rectangular hybrid automata

- Abstract a rectangular hybrid automata by another hybrid automata.
- Example
- Focus on scaling/omitting variable abstractions.
- Refinement in rectangular hybrid automaton by adding or scaling variables.

Completeness

- Can compute reach exactly.
- When the variable abstraction function corresponds to scaling/omitting variables, and the rectangular hybrid automaton is initialized rectangular, the CEGAR loop terminates always with the right answer.
 - Abstracts initialized RHA to initialized RHA.
 - IRHA have "finite bisimilation" (when converted to multirate automata).

- CEGAR for discrete systems.
- CEGAR for hybrid systems.
 - Discrete abstractions Alur et. al - TACAS 2003 Clarke et. al - TACAS 2003
 - Hybrid abstractions Larsen et. al - FORMATS 2007, Prabhakar et. al - VMCAI 2012.
 - CEGAR for stability Duggirala & Mitra ICCPS 2011, HSCC 2012