
CEGAR: Counterexample-guided Abstraction
Refinement

Sayan Mitra
Slides from Pavithra Prabhakar

ECE/CS 584: Embedded System Verification

November 13, 2012

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Outline

Finite State Systems: Abstraction

Refinement

CEGAR

Validation
Refinment based on counterexample analysis

Cegar for Hybrid Systems

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Preliminaries

Finite state system (FSS) T
Q - finite set of states

Σ - transition labels

qinit - initial state

→⊆ Q × Σ× Q - transition function

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Abstraction

Definition

Let T1 and T2 be two FSSs. T2 is an abstraction of T1 if there
exists a function α : Q1 → Q2 such that α(qinit

1) = qinit
2 and for

every q1
a→1 q2, α(q1)

a→2 α(q2).

Notation: T1 ≺ T2.
Given an equivalence relation ∼⊆ Q1 × Q1, define an abstraction
T2 = T1/ ∼ of T1 as follows:

Q2 = Q1/ ∼
q2

a→2 q′2 if there exists q1 ∈ q2 and q′1 ∈ q′2 such that

q1
a→1 q′1.

Example

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Abstraction

Why do we want/need to abstract?

To obtain “simpler” systems

Does an abstraction preserve all properties?

No. It preserves certain properties.
Example: If the abstraction is safe, then the original system is
safe.

Can an abstraction always prove the safety of a safe system?
No. It might not be the right abstraction.

How do we search for a “right” abstraction?
Refinement!

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Abstraction

Why do we want/need to abstract?
To obtain “simpler” systems

Does an abstraction preserve all properties?

No. It preserves certain properties.
Example: If the abstraction is safe, then the original system is
safe.

Can an abstraction always prove the safety of a safe system?
No. It might not be the right abstraction.

How do we search for a “right” abstraction?
Refinement!

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Abstraction

Why do we want/need to abstract?
To obtain “simpler” systems

Does an abstraction preserve all properties?

No. It preserves certain properties.
Example: If the abstraction is safe, then the original system is
safe.

Can an abstraction always prove the safety of a safe system?

No. It might not be the right abstraction.

How do we search for a “right” abstraction?
Refinement!

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Abstraction

Why do we want/need to abstract?
To obtain “simpler” systems

Does an abstraction preserve all properties?

No. It preserves certain properties.
Example: If the abstraction is safe, then the original system is
safe.

Can an abstraction always prove the safety of a safe system?
No. It might not be the right abstraction.

How do we search for a “right” abstraction?

Refinement!

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Abstraction

Why do we want/need to abstract?
To obtain “simpler” systems

Does an abstraction preserve all properties?

No. It preserves certain properties.
Example: If the abstraction is safe, then the original system is
safe.

Can an abstraction always prove the safety of a safe system?
No. It might not be the right abstraction.

How do we search for a “right” abstraction?
Refinement!

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Refinement

Definition

Let T1 be a FSS and T2 its abstraction. A refinement of T2 is an
FSS T3 such that T1 ≺ T3 ≺ T2.

Example

How do we refine? One approach - CEGAR

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Refinement

Definition

Let T1 be a FSS and T2 its abstraction. A refinement of T2 is an
FSS T3 such that T1 ≺ T3 ≺ T2.

Example
How do we refine? One approach - CEGAR

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Counter-example guided abstraction refinement

Reachability problem: Given a state qf , is it reachable from
the initial state of T1?

Construct an abstraction T2.

Model check T2: Is α(qf) is reachable from the initial state of
T2?
Answer no ⇒ T1 is safe.
Answer yes ⇒ don’t know.
If yes, returns a path in T2 which reaches α(q2) - abstract
counter-example.
Check if the abstract counter-example has a corresponding
concrete counter-example - validation
If yes, you have found a counter-example, and can conclude
that the system is unsafe.
Otherwise, abstract counter-example is “spurious”.
Use it to refine the abstraction.

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

CEGAR loop

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Validation

σ′ = q′1
a1→2 q′2

a2→2 q′3
a3→ · · · ak→ q′k+1: counter-example in T2.

Definition

Validation: Does there exist σ = q1
a1→2 q2

a2→2 q3
a3→ · · · ak→ qk+1 in

T1 such that q1 = qinit
1 , qk+1 = qf and α(qi) = q′i for all i?

Validation procedure

For 1 ≤ i ≤ k + 1, compute Reachi : set of all states which can
“mimic” q′i

ai→ · · · ak→ q′k+1 and reach qf .

Reachk+1 = {qf }.
Reachi = α−1(q′i) ∩ Pre(Reachi+1, ai) for 1 ≤ i ≤ k.

Proposition

Concrete σ exists iff Reach0 6= ∅.

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Validation

σ′ = q′1
a1→2 q′2

a2→2 q′3
a3→ · · · ak→ q′k+1: counter-example in T2.

Definition

Validation: Does there exist σ = q1
a1→2 q2

a2→2 q3
a3→ · · · ak→ qk+1 in

T1 such that q1 = qinit
1 , qk+1 = qf and α(qi) = q′i for all i?

Validation procedure

For 1 ≤ i ≤ k + 1, compute Reachi : set of all states which can
“mimic” q′i

ai→ · · · ak→ q′k+1 and reach qf .

Reachk+1 = {qf }.
Reachi = α−1(q′i) ∩ Pre(Reachi+1, ai) for 1 ≤ i ≤ k.

Proposition

Concrete σ exists iff Reach0 6= ∅.

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Refinement using the counterexample analysis

Let j be the largest integer such that Reachj = ∅, i.e., first set
in the backward computation which becomes empty.

Post(α−1(q′j)) ∩ Reachj+1 = ∅.
Split q′j+1 into two states, such that one contains

Post(α−1(q′j)) and the other contains Reachj+1.

This is the new abstraction T3.

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Related Work

CEGAR used in software verification

Clarke et. al

Microsoft research: SLAM, boolean programs

Abstraction mechanisms: Predicate abstraction

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Review of CEGAR algorithm

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Hybrid system

H = (Loc, q0, edges,Cont,Cont0, flow , invariant, guard , reset):

Loc - finite set of locations,

`0 ∈ Loc - initial location,

edges ⊆ Loc × Loc,

Cont = Rn - set of continuous states,

Cont0 ⊆ Cont - initial continuous states,

flow : Loc × Cont → (R+ → Cont),

invariant : Loc → 2Cont ,

guard : edges → 2Cont , and

reset : edges → 2Cont×Cont .

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Example: thermostat

Loc = {off , on},
`0 = off ,

edges = {(off , on), (on, off)},
Cont = R,

Cont0 = {20},
flow(off , x , t) = xe−0.1t and flow(on, x , t) = · · · ,
invariant(off) = {x | x ≥ 18} and invariant(on) = · · · ,
guard(off , on) = {x | x < 19} and guard(on, off) = · · · , and

reset(off , on) = reset(on, off) = {(x , x) | x ∈ R}.
Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Semantics of a Hybrid Automaton

[[H]] = (Q,Σ, qinit ,→):

Q = Loc × Cont,

Σ = Actions ∪ {τ},
qinit = {q0} × Cont0.

(`, x)→a (`′, x ′):

Discrete transitions: a ∈ Actions,
Continuous transitions: a = τ .

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Semantics of HA

Discrete transitions

(`1, x1)→a (`2, x2) iff ∃edge = (`1, a, `2):

x1 ∈ guard(edge), and

(x1, x2) ∈ reset(edge).

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Semantics of HA

Continuous transitions

(`1, x1)→τ (`2, x2) iff

`1 = `2,

∃t such that flow(`1, x1)(t) = x2, and for all t ′ ∈ [0, t],
flow(`1, x1)(t ′) ∈ invariant(`1).

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Discrete abstraction

Definition

Let H1 and H2 be two HSs. H2 is an abstraction of H1 if there
exists a function α : Q1 → Q2 such that α(qinit

1) = qinit
2 and for

every q1
a→1 q2, α(q1)

a→2 α(q2).

Finite partition of the state space

Construct the transitions - time transitions and discrete
transitions

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Discrete abstraction

Definition

Let H1 and H2 be two HSs. H2 is an abstraction of H1 if there
exists a function α : Q1 → Q2 such that α(qinit

1) = qinit
2 and for

every q1
a→1 q2, α(q1)

a→2 α(q2).

Finite partition of the state space

Construct the transitions - time transitions and discrete
transitions

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Challenges

Defining the partition - by linear constraints, polynomial
constraints, ellipsoids etc.

Computing discrete transitions - computing weakest
preconditions, intersections.

P
a→ P ′ iff Pre(P ′, a) ∩ P 6= ∅.

Computing time transitions - computing time predecessors,
intersections.

Depends on the continuous dynamics
P

τ→ P ′ iff ∪tPre(P ′, t) ∩ P 6= ∅.
Often can only compute an approximation of ∪tPre(P ′, t).
But still an abstraction!

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Challenges

Defining the partition - by linear constraints, polynomial
constraints, ellipsoids etc.

Computing discrete transitions - computing weakest
preconditions, intersections.

P
a→ P ′ iff Pre(P ′, a) ∩ P 6= ∅.

Computing time transitions - computing time predecessors,
intersections.

Depends on the continuous dynamics
P

τ→ P ′ iff ∪tPre(P ′, t) ∩ P 6= ∅.
Often can only compute an approximation of ∪tPre(P ′, t).
But still an abstraction!

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Challenges

Defining the partition - by linear constraints, polynomial
constraints, ellipsoids etc.

Computing discrete transitions - computing weakest
preconditions, intersections.

P
a→ P ′ iff Pre(P ′, a) ∩ P 6= ∅.

Computing time transitions - computing time predecessors,
intersections.

Depends on the continuous dynamics
P

τ→ P ′ iff ∪tPre(P ′, t) ∩ P 6= ∅.

Often can only compute an approximation of ∪tPre(P ′, t).
But still an abstraction!

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Challenges

Defining the partition - by linear constraints, polynomial
constraints, ellipsoids etc.

Computing discrete transitions - computing weakest
preconditions, intersections.

P
a→ P ′ iff Pre(P ′, a) ∩ P 6= ∅.

Computing time transitions - computing time predecessors,
intersections.

Depends on the continuous dynamics
P

τ→ P ′ iff ∪tPre(P ′, t) ∩ P 6= ∅.
Often can only compute an approximation of ∪tPre(P ′, t).
But still an abstraction!

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

CEGAR loop

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Validation

σ′ = q′1
a1→2 q′2

a2→2 q′3
a3→ · · · ak→ q′k+1: counter-example in T2.

Validation procedure

For 1 ≤ i ≤ k + 1, compute Reachi : set of all states which can
“mimic” q′i

ai→ · · · ak→ q′k+1 and reach qf .

Reachk+1 = {qf } × inv(qf).

Reachi = α−1(q′i) ∩ Pre(Reachi+1, ai) for 1 ≤ i ≤ k.

Cannot compute Reachi exactly.

What do we do?

If validation fails, i.e., Reachk = ∅ for some k , continue to the
refinement step.
Otherwise, use better Pre computation. (After sometime, give
up!)
If Reach0 6= ∅, cannot conclude anything. But can only
conjecture that the design is probably not good.

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Validation

σ′ = q′1
a1→2 q′2

a2→2 q′3
a3→ · · · ak→ q′k+1: counter-example in T2.

Validation procedure

For 1 ≤ i ≤ k + 1, compute Reachi : set of all states which can
“mimic” q′i

ai→ · · · ak→ q′k+1 and reach qf .

Reachk+1 = {qf } × inv(qf).

Reachi = α−1(q′i) ∩ Pre(Reachi+1, ai) for 1 ≤ i ≤ k.

Cannot compute Reachi exactly.

What do we do?

If validation fails, i.e., Reachk = ∅ for some k , continue to the
refinement step.
Otherwise, use better Pre computation. (After sometime, give
up!)
If Reach0 6= ∅, cannot conclude anything. But can only
conjecture that the design is probably not good.

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Validation

σ′ = q′1
a1→2 q′2

a2→2 q′3
a3→ · · · ak→ q′k+1: counter-example in T2.

Validation procedure

For 1 ≤ i ≤ k + 1, compute Reachi : set of all states which can
“mimic” q′i

ai→ · · · ak→ q′k+1 and reach qf .

Reachk+1 = {qf } × inv(qf).

Reachi = α−1(q′i) ∩ Pre(Reachi+1, ai) for 1 ≤ i ≤ k.

Cannot compute Reachi exactly.

What do we do?

If validation fails, i.e., Reachk = ∅ for some k , continue to the
refinement step.
Otherwise, use better Pre computation. (After sometime, give
up!)
If Reach0 6= ∅, cannot conclude anything. But can only
conjecture that the design is probably not good.

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Refinement

Let k be the largest integer such that Reachk = ∅, i.e., first
set in the backward computation which becomes empty.

Post(α−1(q′i)) ∩ Reachk+1 = ∅.
Split q′k+1 into two states, such that one contains
Post(α−1(q′i)) and the other contains Reachk+1.

This is the new abstraction T3.

Add some constraint that splits the two sets of states.

Alur et. al - find separating predicates for polyhedra.

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Some remarks

Need not terminate, unlike for the finite state case.

Even upon termination due to validation of a
counter-example, cannot conclude that the system is
erroneous (due to overapproximations).

In general, computing abstractions is expensive.

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Hybrid Automata based CEGAR

Main concept

Abstract a hybrid automaton by another “simpler” hybrid
automaton.

Constructing abstractions may be easier, example,
approximating a linear system by a rectangular system.

Need different refinement methods.

Hybrid Automata based CEGAR for rectangular hybrid
automata - complete for the initialized fragment.

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Hybrid Automata based CEGAR

Main concept

Abstract a hybrid automaton by another “simpler” hybrid
automaton.

Constructing abstractions may be easier, example,
approximating a linear system by a rectangular system.

Need different refinement methods.

Hybrid Automata based CEGAR for rectangular hybrid
automata - complete for the initialized fragment.

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Abstraction

αLoc : Loc1 → Loc2.

αedges : edges1 → edges2.

αVar : R|Var1| → R|Var2|.

Example:

x1, x2, x3 - variables in H1.

z1, z2 - variables in H2.

αVar(z1) = x1 + 3x2

αVar(z2) = x1 − x3

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Abstraction

αLoc : Loc1 → Loc2.

αedges : edges1 → edges2.

αVar : R|Var1| → R|Var2|.

Example:

x1, x2, x3 - variables in H1.

z1, z2 - variables in H2.

αVar(z1) = x1 + 3x2

αVar(z2) = x1 − x3

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

CEGAR for rectangular hybrid automata

Abstract a rectangular hybrid automata by another hybrid
automata.

Example

Focus on scaling/omitting variable abstractions.

Refinement in rectangular hybrid automaton by adding or
scaling variables.

Completeness

Can compute reach exactly.

When the variable abstraction function corresponds to
scaling/omitting variables, and the rectangular hybrid
automaton is initialized rectangular, the CEGAR loop
terminates always with the right answer.

Abstracts initialized RHA to initialized RHA.
IRHA have “finite bisimilation” (when converted to multirate
automata).

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

CEGAR for rectangular hybrid automata

Abstract a rectangular hybrid automata by another hybrid
automata.

Example

Focus on scaling/omitting variable abstractions.

Refinement in rectangular hybrid automaton by adding or
scaling variables.

Completeness

Can compute reach exactly.

When the variable abstraction function corresponds to
scaling/omitting variables, and the rectangular hybrid
automaton is initialized rectangular, the CEGAR loop
terminates always with the right answer.

Abstracts initialized RHA to initialized RHA.
IRHA have “finite bisimilation” (when converted to multirate
automata).

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

Summary

CEGAR for discrete systems.

CEGAR for hybrid systems.

Discrete abstractions
Alur et. al - TACAS 2003 Clarke et. al - TACAS 2003
Hybrid abstractions
Larsen et. al - FORMATS 2007, Prabhakar et. al - VMCAI
2012.
CEGAR for stability
Duggirala & Mitra ICCPS 2011, HSCC 2012

Slides from Pavithra Prabhakar CEGAR:Counterexample-Guided Abstraction Refinement

