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21 Verifying Stability Properties

In the next wto lectures we study stability and stability verificaton of HIOAs. Informally, an HIOA
is said to be stable if it converges to an equilibrium state starting from any state. Describing stabil-
ity requires infinite (in fact uncountable) number of atomic propositions in temporal logics. Stabil-
ity of each individual state model does not necessarily imply the stability of the whole automaton.
The Lyapunov-based techniques we discuss rely on results from the literature on switched sys-
tems [HM99, Lib03, Bra98]. In the switched system model, details of the discrete mechanisms,
namely, the preconditions and the effects of transitions, are neglected. Instead, an exogenous
switching signal brings about the switches between the different state models. Assuming that the
individual state models of a hybrid system we characterize the class of switching signals, based
only on the rate of switches and not the particular sequence of switches, that guarantee stability
of the whole system.

21.1 Assumptions

(1) Input/output variables and input actions are absent, that is, U = Y = I = ∅.

(2) The collection of locations/trajectory definitions is finite; the state models are indexed by a
finite index set I = {1, . . . ,m}, for some m ∈ N. The individual trajectory definitions of A are
Si, i ∈ I .

(3) Let the continuous state space Xc be Rn. For each state model Si, i ∈ I the collection of V-
DAIs Fi is described by differential equations in the vector notation of the form d(xc) = fi(xc),
where fi is a well behaved (locally Lipschitz) function.

(4) The trajectories defined by individual trajdefs converge to some equilibrium point in the state-
space, say the origin, without loss of generality. Formally, fi(0) = 0 for each i ∈ I .

21.1.1 Stability Definitions

Stability is a property of the continuous variables of HIOA A, with respect to the standard Eu-
clidean norm in Rn. The Euclidean norm of α(t), denoted by |α(t)|, is restricted to the set of
real-valued continuous variables. Recall that the shorthand notation α(t) denotes the valuation of
the state variables of an HIOA A in the execution α at time t ∈ [0, α.ltime].
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Definition 1. The origin is a stable equilibrium point of a HIOA A, in the sense of Lyapunov, if for every
ε > 0, there exists a δ1 = δ1(ε) > 0, such that for every closed execution α of A, |α(0)| ≤ δ1 implies that
|α(t)| ≤ ε for all t, 0 ≤ t ≤ α.ltime. In this case, we say that A is stable.

For stable A, the state can be bounded in an arbitrarily small ball of radius ε, by starting the
automaton from a state within a suitably chosen smaller ball of radius δ1.

Definition 2. An HIOA A is asymptotically stable if it is stable and there exists δ2 > 0 so that for any
execution fragment |α(0)| ≤ δ2 implies that α(t) → 0 as t → ∞. If the above condition holds for all δ2
then A is globally asymptotically stable.

Examples. Stability and asymptotic stability.

Definition 3. An HIOA A is said to be exponentially stable if there exist positive constants δ, c, and λ
such that all closed executions fragments with |α(0)| ≤ δ satisfy the inequality |α(t)| ≤ c|α(0)|e−λt, for
all t, 0 ≤ t ≤ α.ltime. If the above holds for all δ then A is said to be globally exponentially stable.

In the above definitions, the constants are quantified prior to the executions, and hence, these
notions of stability are uniform over executions. We will employ the term “uniform” in the more
conventional sense to describe uniformity with respect to the initial time of observation. Thus,
uniform stability guarantees that the stability property in question holds not just for all executions,
but for all reachable execution fragments.

Definition 4. An HIOA A is uniformly stable in the sense of Lyapunov, if for every ε > 0 there exists a
constant δ1 = δ1(ε) > 0, such that for any reachable closed execution fragment α, |α(0)| ≤ δ1 implies that
|α(t)| ≤ ε, for all t, 0 ≤ t ≤ α.ltime.

Definition 5. An HIOA A is said to be uniformly asymptotically stable if it is uniformly stable and there
exists δ2 > 0, such that for every ε > 0 there exists a T > 0, such that for any reachable execution fragment
α,

|α(0)| ≤ δ2 ⇒ |α(t)| ≤ ε, ∀t ≥ T (1)

It is said to be globally uniformly asymptotically stable (GUAS) if the above holds for all δ2, with
T = T (δ2, ε).

Definition 6. An HIOAA is uniformly exponentially stable if it is uniformly stable and there exist δ, c,
and λ, such that for any reachable closed execution fragment α, if |α(0)| ≤ δ then |α(t)| ≤ c|α(0)|e−λt,
for all 0 ≤ t ≤ α.ltime. A is globally uniformly exponentially stable if the above holds for all δ with
constant c and λ.

21.2 Multiple Lyapunov Functions

A continuously differentiable function V : Rn → R is said to be positive definite if V(0) = 0 and
V(xc) > 0 for all xc 6= 0. If V(xc) → ∞ as |xc| → ∞ then V is said to be radially unbounded.
For i ∈ I , Vi : Rn → R is said to be a Lyapunov function for mode i if 1. it is positive definite,
2. V̇ (xc)

∆
= ∂V

∂t fi(xx) < 0 for all xc 6= 0.
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If there exists a Lyapunov function Vi for i ∈ I then mode i is asymptotically stable. Furthermore,
if Vi is radially unbounded then i is globally asymptotically stable.

If there exists positive definite continuously differentiable function V : Rn → R and a positive
definite function W : Rn → R such that for each i ∈ I ∂V

∂t fi(xx) < −W (xc) for all xc 6= 0, then V is
said to be a common Lyapunov function for A

Theorem 1. A is GUAS if there exists a common Lyapunov function.

In the absence of a common lyapunov function the stability verification of A has to rely of the
discrete transitions (mode switches). The following theorem gives such a stability in terms of
multiple Lyapunov function.

Theorem 2. Let Vi, i ∈ I be a collection of radially bounded Lyapunov functions for the i modes of A.
Suppose for any i ∈ I there exist collection of positive definite functions Wi : Rn → R such that, for
any execution α, and for any time t1, t2 such that α(t1).xd = i α(t1).xd = i and for all t1 < t < t2,
α(t).xd 6= i,

Vi(α(t2).xc)− Vi(α(t1).xc) ≤ −Wi(α(t1).xc).

Then, A is GUAS.

21.2.1 ADT Theorem of Heshpanha and Morse

The notion of average dwell time (ADT) [HM99] precisely defines a restricted classes of switching
signals that guarantee stability of a switched system. A large average dwell time means that the
system spends enough time in each mode, so as to dissipate the transient energy gained through
mode switches. This itself is not sufficient for stability; in addition, the individual modes of the
automaton must also be stable. Translated to HIOAs: given an HIOA A such that the individual
state models of A are stable, if the ADT of A is greater than a certain constant (a function of the
state model dynamics), then A is stable. However, application of this criterion relies on checking
that the ADT of A is greater than some constant—a property that depends on the rate of mode
switches over all executions of A.

Definition 7. Let A be an HIOA with state models indexed by a finite set I . A discrete transition x
a→ x′

of A is said to be a mode switch if for some i, j ∈ I, i 6= j, x ∈ Invi and x′ ∈ Invj . The set of mode
switching transitions of A is denoted by M. Given an execution fragment α of A, the number of mode
switches over α is denoted by N(α).

A discrete transition is a mode switch if its pre- and post-states satisfy invariants of different
different state models. This implies that different sets of differential equations guide the evolution
of the continuous variables, before and after a mode switch.

Definition 8. Given a duration of time τa > 0, HIOA A has Average Dwell Time (ADT) τa if there
exists a positive constant N0, such that for every reachable execution fragment α,

N(α) ≤ N0 + α.ltime/τa, (2)

The number of extra switches of α with respect to τa is defined as Sτa(α) := N(α)− α.ltime/τa.
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Lemma 3. Suppose A is an HIOA and τa > 0 is an average dwell time for A. Then, any τ ′a that is
0 ≤ τ ′a < τa is also an average dwell time of A

Proof. Inequality (2) is satisfied if we replace τa with a smaller τ ′a.

Theorem 1 from [HM99], adapted to HIOA, gives a sufficient condition for stability based on
average dwell time. Informally, it states that a hybrid system is stable if the discrete switches
are between modes which are individually stable, provided that the switches do not occur too
frequently on the average.

Theorem 4. Suppose there exist positive definite, continuously differentiable functions Vi : Rn → Rn,
for each i ∈ I , such that we have two positive numbers λ0 and µ, and two strictly increasing continuous
functions β1, β2 such that:

β1(|xc|) ≤ Vi(xc) ≤ β2(|xc|), ∀xc, ∀i ∈ I, (3)
∂Vi
∂xc

fi(xc) ≤ −2λ0Vi(xc), ∀xc, ∀i ∈ I, and (4)

Vi(x′c) ≤ µVj(xc), ∀x
a→A x′, where i = x′ d mode and j = x d mode. (5)

Then, A is globally uniformly asymptotically stable if it has an ADT τa > logµ
λ0

.

Its worth making a few remarks about this theorem. First of all, it is well-known that if the state
model Si, i ∈ I is globally asymptotically stable, then there exists a Lyapunov function Vi that
satisfies (3) and ∂Vi

∂xc
fi(xc) ≤ −2λiVi(xc), for appropriately chosen λi > 0. As the index set I is

finite a λ0 independent of i can be chosen such that for all i ∈ I , Equation (4) holds. The third
assumption, Equation 5, restricts the maximum increase in the value of the current Lyapunov
functions over any mode switch, by a factor of µ.

In [HM99] and [Lib03] this theorem is presented for the switched system model which differs from
the more general HIOA model in two ways: (a) In the switched system model, all variables are
continuous except for the mode variable which determines the active state model. In HIOA, there
are both discrete and continuous variables. (b) The (discrete) transitions of a switched system
correspond to the switching signal changing the value of mode; values of continuous variables
remain unchanged over transitions. In HIOAs, transitions can change the value of continuous
variables. For example, a stopwatch is typically modeled as a continuous variable that is reset by
discrete transitions. The proof of Theorem 4 still works for the HIOA model because for this anal-
ysis, it suffices to consider only those discrete transitions of HIOAs that are also mode switches.
Assumption (2) guarantees that non-mode switching transitions do not change the value of the
continuous variables. Secondly, resetting continuous variables change the value of the Lyapunov
functions but hypothesis 5 guarantees that the change is bounded by a factor of µ.

Proof sketch for Theorem 4. This proof is adapted from the proof of Theorem 3.2 of [Lib03] which
constructs an exponentially decaying bound on the Lyapunov functions of each mode along any
execution. Suppose α is any execution of A. Let T = α.ltime and t1, . . . , tN be instants of mode
switches in α. We will find an upper-bound on the value of Vα(T )dmode(α(T )), where α(t) d mode ∆

=

i, i ∈ I if and only if α(t) ∈ Invi. We define a function W (t)
∆
= e2λ0tVα(t)dmode(α(t)). Using
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the fact that W is non-increasing between mode switches and Equation 5 it can be shown that
W (ti+1) ≤ µW (ti). Iterating this inequality N(α) times we get W (T ) ≤ µN(α)W (0), that is

e2λ0TVα(T )dmode(α(T )) ≤ µN (α)Vα(0)dmode(α(0)),

Vα(T )dmode(α(T )) ≤ e−2λ0T+N(α) log µVα(0)dmode(α(0))

If α has average dwell time τa, then

Vα(T )dmode(α(T )) ≤ e−2λ0T+(N0+
T
τa

) log µVα(0)dmode(α(0))

≤ eN0 logµe(
log µ
τa
−2λ0)TVα(0)dmode(α(0)).

Now, if τa > logµ
2λ then Vα(T )dmode(α(T )) converges to 0 as T → 0. Then from (3) it follows that A

is globally asymptotically stable.

21.3 ADT Equivalence

In order to check whether τa is an ADT for a given HIOAA, it is often easier to check the same ADT
property for another, more abstract, HIOA B that is “equivalent” to A with respect to switching
behavior. This notion of equivalence is formalized as follows.

Definition 9. Given HIOAs A and B, if for all τa > 0, τa is an ADT for B implies that τa is an ADT
for A, then we say that A switches slower than B and write this as A ≤switch B. If B ≤switch A and
A ≤switch B then we say A and B are ADT-equivalent.

We propose an inductive method for proving ADT-equivalence. The key idea is to use a new vari-
ety of forward simulation relation that we encountered in Section ??, in the context of verification
of trace inclusions. Here, instead of the trace of an execution, we are concerned with the number
of mode switches that occur and the amount of time that elapses over an execution.

Definition 10. Consider HIOAs A and B. A switching simulation relation from A to B is a relation
R ⊆ QA ×QB satisfying the following conditions, for all states x and y of A and B, respectively:

1. (Start condition) If x ∈ ΘA then there exists a state y ∈ ΘB such that xR y.

2. (Transition condition) If x R y and α is an execution fragment of A with α.fstate = x and
consisting of one single action surrounded by two point trajectories, then B has a closed execution
fragment β, such that β.fstate = y, N(β) ≥ 1, β.ltime = 0, and α.lstateR β.lstate.

3. (Trajectory condition) If x R y and α is an execution fragment of A with α.fstate = x and
consisting of a single closed trajectory τ of a particular state model S, then B has a closed execution
fragment β, such that β.fstate = y, β.ltime ≤ α.ltime, and α.lstateR β.lstate.

Note that HIOAs A and B are not necessarily comparable.

Lemma 5. Let A and B be HIOAs, and let R be a switching simulation relation from A to B, then for all
τa > 0 and for every execution α of A, there exists an execution β of B such that Sτa(α) ≤ Sτa(β).

5



Proof. We fix τa and α and construct an execution of B that has more extra switches than α. Let
α = τ0a1τ1a2τ2 . . . and let α.fstate = x. We consider cases:

Case 1: α is an infinite sequence. We can write α as an infinite concatenation α0
_ α1

_ α2 . . .,
in which the execution fragments αi with i even consist of a trajectory only, and the execu-
tion fragments αi with i odd consist of a single discrete transition surrounded by two point
trajectories.

We define inductively a sequence β0β1β2 . . . of closed execution fragments of B such that
x R β0.fstate, β0.fstate ∈ ΘB, and for all i, βi.lstate = βi+1.fstate, αi.lstate R βi.lstate,
and Sτa(β) ≥ Sτa(α). Property 1 of Definition 10 ensures that there exists such a β0.fstate
because α0.fstate ∈ ΘA. We use Property 3 of Definition 10 for the construction of the
βi’s with i even. This gives us βi.ltime ≤ αi.ltime for every even i. We use Property 2 of
Definition 10 for the construction of the βi’s with i odd. This gives us βi.ltime = αi.ltime
and N(βi) ≥ N(αi) for every odd i. Let β = β0

_ β1
_ β2 . . .. Since β0.fstate ∈ ΘB, β is an

execution for B. Since β.ltime ≤ α.ltime and N(β) ≥ N(α), the required property follows.

Case 2: α is a finite sequence ending with a closed trajectory. Similar to first case.

Case 3: α is a finite sequence ending with an open trajectory. Similar to first case except that the
final open trajectory τ of α is constructed using a concatenation of infinitely many closed
trajectories of A such that τ = τ0

_ τ1
_ . . .. Then, working recursively, we construct a

sequence β0β1 . . . of closed execution fragments of B such that for each i, τi.lstateRβi.lstate,
βi.lstate = βi+1.fstate, and βi.ltime ≤ τi.ltime. This construction uses induction on i, using
Property 3 of Definition 10 in the induction step. Now, let β = β0

_ β1
_ . . .. Clearly, β is an

execution fragment of B and τ.fstateRβ.fstate and β.ltime ≤ τ.ltime.

Theorem 6. If A and B are HIOAs andR is a switching simulation relation from A to B, then A ≤switch
B.

Proof. We fix a τa. Given N0 such that for every execution β of B, Sτa(β) ≤ N0, it suffices to show
that for every execution α of A, Sτa(α) ≤ N0. We fix α. From Lemma 5 we know that there exists
a β such that Sτa(β) ≥ Sτa(α), from which the result follows.

Corollary 7. LetA and B be HIOAs. SupposeR1 andR2 be a switching forward simulation relation from
A to B and from B to A, respectively. Then, A and B are ADT-equivalent.

Switching simulation relations and Corollary 7 give us an inductive method for proving that any
given pair of HIOA are equivalent with respect to switching speed, that is, average dwell time.
The theorem prover strategies for proving forward simulations can be used to partially automate
switching simulation proofs. An interesting related question is computation of the switching sim-
ulation relationR from the specifications of A and B.
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Linear Hysteresis Switch. Consider LinHSwitch shown in Figure 1. The monitoring signals are
generated by linear differential equations: for each i ∈ I , d(µi) = ciµi if mode = i, otherwise
d(µi) = 0; ci, i ∈ I , is a positive constant. The switching logic unit implements the scale indepen-
dent hysteresis switching.
Observe that the switching behavior of LinHSwitch does not depend on the value of the µi’s but
only on the ratio of µi

µmin
, which is always within [1, (1 + h)]. Specifically, when LinHSwitch is in

mode i, all the ratios remain constant, except µi
µmin

. The ratio µi
µmin

increases monotonically from
1 to either (1 + h) or to (1 + h)2, in time 1

ci
ln(1 + h) or 2

ci
ln(1 + h), respectively. Based on this

observation, we will first show that there exists a automaton B, such that LinHSwitch ≤switch B,
using a switching simulation relation.
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Example: Abstract switching automaton. We begin by constructing the abstract automaton B.
Consider a graph G = (V, E , w, e0), where:

1. V ⊂ {1, (1 + h)}m, such that for any v ∈ V , all the m-components are not equal. We denote
the ith component of v ∈ V by v[i].

2. An edge (u, v) ∈ E if and only if, one of the following conditions hold:
(a) There exists j ∈ {1, . . . ,m}, such that, u[j] 6= v[j] and for all i ∈ {1, . . . ,m}, i 6= j,
u[i] = v[i]. The cost of the edge w(u, v) := 1

cj
ln(1 + h) and we define ζ(u, v) := j.

(b) There exists j ∈ {1, . . . ,m} such that u[j] = 1, v[j] = (1 + h) and for all i ∈ {1, . . . ,m},
i 6= j implies u[i] = (1 + h) and v[i] = 1. The cost of the edge w(u, v) := 2

cj
ln(1 + h) and we

define ζ(u, v) := j. The ith component of the source (destination) vertex of edge e is denoted
by e[1][i] (e[2][i], respectively).

3. e0 ∈ E , such that e0[1][i0] = (1 + h) and for all i 6= i0, e0[1][i] = 1.

A typical executionα = τ0, a1, τ1, a2, τ2 of LinHSwitch is as follows: τ0 is a point trajectory that maps
to the state (mode = 1, [µ1 = (1 + h)C0, µ2 = C0, µ3 = C0]), a1 = switch(1, 3), τ1.dom = [0, 1

c3
ln(1 +

h)], (τ1 ↓ µ3)(t) = C0e
c3t, a2 = switch(3, 2), τ2.dom = [0, 2

c2
ln(1 + h)], (τ2 ↓ µ2)(t) = C0e

c2t. Note
that each edge e of G corresponds to a mode of LinHSwitch; this correspondence is captured by the
ζ function in the definition of G.
We define a relationR on the states on A = LinHSwitch and B = Aut(G).

Definition 11. For any x ∈ QA and y ∈ QB, xR y if and only if:

1. ζ(y d mode) = x d mode

2. For all j ∈ {1, . . . , n},
(a) xdµj

xdµmin = ecj(ydx), if j = ζ(y d mode),

(b) xdµj
xdµmin = (y d mode)[k][j], k ∈ {1, 2}.

Part 1 of Definition 11 states that if A is in mode j and B is in mode e, then ζ(e) = j. Part 2 states
that for all j 6= ζ(e), the jth component of e[1] and e[2] are the same, and are equal to µj/µmin,
and for j = ζ(e), µj = µmine

cjx. Lemma 8 states that R is a switching simulation relation from A
and B. The proof follows the typical pattern of simulation proofs. We show by a case analysis that
every action and state model of automatonA can be simulated by an execution fragment of Bwith
at least as many extra switches. From Theorem 6 it follows that HIOA LinHSwitch ≤switch Aut(G),
and therefore if τa is an ADT for Aut(G) then it is also an ADT for LinHSwitch.

Lemma 8. R is a switching simulation relation from A to B.

21.4 Verifying ADT: Optimization-based Approach

We attempt to find an execution of the automaton that violates the ADT property. Failure to find
such a counterexample execution indicates that the ADT property is satisfied by the HIOA. The
search for a counterexample execution is formulated as an optimization problem. If we solve the
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automaton LinHSwitch(I : type, i0 : I, h : Real, c : Array[I,Real])
where h ≥ 0

signature
internal switch(i, j : I) where i 6= j

variables
internal mode : I := i0;µ : Array[I,Real];

initially ∀i : I, (i = i0 ∧ µ[i] = (1 + h)C0)
∨(i 6= i0 ∧ µ[i] = C0)

let µmin := mini:I{µ[i]}

transitions
internal switch(i, j)

pre mode = i ∧ (1 + h)µ[j] ≤ µ[i];
eff mode := j;

trajectories
trajdef mode(i : I)

invariant mode = i;
stop when ∃j : I, (1 + h)µ[j] ≤ µ[i];
evolve ∀ j : I, (j = i ∧ d(µ[j]) = c[j]µ[j])
∨(j 6= i ∧ d(µ[j]) = 0);

Figure 1: Linear hysteresis switch.
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Figure 2: ADT-equivalent graph (m = 3) for LinHSwitch.

following optimization problem:

OPT(τa) : α∗ ∈ arg max
α∈ExecsA

Sτa(α),

and the optimal value Sτa(α∗) turns out to be bounded, then we can conclude that A has ADT
τa. Otherwise, if Sτa(α∗) is unbounded then we can conclude that τa is not an ADT for A. In
fact, any execution α that gives an unbounded value of OPT(τa) would serve as a counterexample
execution violating the average dwell time property. We study particular classes of HIOA for
which OPT(τa) can be formulated and solved efficiently.

21.4.1 Initialized HIOA

An closed execution fragment α of an HIOA is said to be a cyclic fragment if α.fstate = α.lstate.
The next theorem implies that for an initialized HIOA A, it is necessary and sufficient to solve
OPT(τa) over the space of the cyclic fragments of A instead of the larger space of all execution
fragments.
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Theorem 9. Given τa > 0 and initialized HIOA A, OPT(τa) is bounded if and only if A does not have
any cycles with extra switches with respect to τa.

Proof. For simplicity we assume that all discrete transitions of the automatonA are mode switches
and that for any pair of modes i, j, there exists at most one action which can bring about a mode
switch from i to j. Existence of a reachable cycle α with extra switches with respect to τa is suf-
ficient to show that τa is not an ADT for A. This is because by concatenating a sequence of α’s,
we can construct an execution fragment α _ α _ α . . . with an arbitrarily large number of extra
switches.

We prove by contradiction that existence of a cycle with extra switches is necessary for making
OPT(τa) unbounded. We assume that OPT(τa) is unbounded for A and that A does not have any
cycles with extra switches. By the definition of OPT, for any constant N0 there exists an execution
that has more than N0 extra switches with respect to τa. Let us choose N0 > |I|3. Of all the
executions that have more than N0 extra switches, let α = τ0a1τ1 . . . τn be a closed execution that
has the smallest number of mode switches. From α, we construct β = τ∗0 a1τ

∗
1 . . . τ

∗
n , using the

following two rules:

1. Each τi of α is replaced by: τ∗i = arg min{τ.ltime | τ.fstate ∈ Rai , τ.lstate ∈ Preai+1}.

2. If there exists i, j ∈ I , such that ai = aj and ai+1 = aj+1, then we make τ∗i = τ∗j .

Claim 1. The sequence β is an execution fragment of A and Sτa(β) > |I|3.

Proof of claim: We prove the first part of the claim by showing that each application of the above
rules to an execution fragment of A results in another execution fragment. Consider Rule (1)
and fix i. Since τ∗i .fstate ∈ Rai and τi−1.lstate ∈ Preai , τi−1.lstate

ai→ τ∗i .fstate. And, since
τ∗i .lstate ∈ Preai+1 and τi+1.fstate ∈ Rai+1 , we know that τ∗i .lstate

ai+1→ τi+1.fstate. Now for
Rule (2), we assume there exist i and j such that the hypothesis of the rule holds and suppose
τ∗j = τ∗i = τi. We know that even if τ∗j 6= τj , the first states of both are in Raj and the last states are
in Preaj+1 . Therefore, aj matches up the states of τj−1 and τ∗j and likewise aj+1 matches the states
of τ∗j and τj+1.

The second part of the claim follows from the fact that each trajectory τi is replaced by the shortest
trajectory τ∗i from the initialization set of the previous transition Rai to the guard set of the next
transition Preai+1 . That is, for each i, 0 < i < n, τ∗i .ltime ≤ τi.ltime and therefore β.ltime ≤
α.ltime and Sτa(β) > N0 > |I|3.

Since N(β) > |I|3, there must be a sequence of 3 consecutive modes that appear multiple times in
β. That is, there exist i, j ∈ {1, . . . ,m}, and p, q, r ∈ I , such that τ∗i .fstate d mode = τ∗j .fstate d
mode = p, τ∗i+1.fstate d mode = τ∗j+1.fstate d mode = q, and τ∗i+2.fstate d mode = τ∗j+2.fstate d
mode = r. Then, from Rule (2) we know that τ∗i+1 = τ∗j+1. In particular, τ∗i+1.fstate = τ∗j+1.fstate,
that is, we can write β = βp

_ γ _ βs, where γ is a cycle. Then we have the following:

N(βp) +N(γ) +N(βs) > N0 + βp.ltime/τa + γ.ltime/τa + βs.ltime/τa

N(βp) +N(βs) + Sτa(γ) > N0 + βp.ltime/τa + βs.ltime/τa

N(βp
_ βs) > N0 + βp

_ βs.ltime/τa [βp.lstate = βs.fstate]
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The last step follows from the assumption that Sτa(γ) ≤ 0. Therefore, we have Sτa(βp
_ βs) > N0

which contradicts our assumption that β has the smallest number of mode switches among all the
executions that have more than N0 extra switches with respect to τa.

The following corollary allows us to limit the search for cycles with extra switches to cycles with
at most |I|3 mode switches. It is proved by showing that any cycle with extra switches that has
more than |I|3 mode switches can be decomposed into two smaller cycles, one of which must also
have extra switches.

Corollary 10. Suppose A is an initialized HIOA with state models indexed by I . If A has a cycle with
extra switches, then it has a cycle with extra switches that has fewer than |I|3 mode switches.

Theorem 11. Suppose A is an initialized HIOA with state models indexed by I . For any τa > 0, τa is an
ADT for A if an only if all cycles of length at most |I| are free of extra switches.

Proof. Follows from Corollary 10 and the definition of the optimization problem OPT(τa).

This theorem gives us a method for verifying ADT of initialized HIOAs by maximizing OPT(τa)
over all cycles of length at most |I|. In other words, for verify ADT of initialized hybrid systems
it suffices to solve the optimization problem over a much smaller set of executions than we set
out with at the beginning of Section 21.4. For non-initialized HIOA A, the first part of Theorem 9
holds. That is, solving OPT(τa) over all cycles of length at most |I|, if a cycle with extra switches
is found, then we can conclude that τa is not an ADT forA. Solving OPT(τa) relies on formulating
it as a mathematical program such that standard mathematical programming tools can be used.
This is the topic of the next section.

Example: Verifying ADT. The problem of solving OPT(τa) for Aut(G) reduces to checking
whether G contains a cycle of length m, for any m > 1, with cost less than mτa. This is the well
known mean-cost cycle problem for directed graphs and can be solved in O(|V||E|) time using
Bellman-Ford algorithm or Karp’s minimum mean-weight cycle algorithm [CLR90]. In particular,
for LinHSwitch with m = 3, c1 = 2, c2 = 4, and c3 = 5, we compute the minimum mean-cost cycle.
The cost of this cycle, which is also the ADT of this automaton, is 19

40 log(1 + h).
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