
PVS Tutorial (Part 1 & 2)
ECE/CS 584: lecture 06 & 07

sayan mitra
mitras@illinois.edu

university of illinois at urbana-champaign

September 20 & 25, 2012

verifying (infinite state) state machines

I fully automatic techniques (model checking) are available for models
with finite states

I alternative approach: use expressive modelling framework, e.g., High
Order Logic, and targeted proof techniques

I a theorem prover such as PVS provides a platform for the latter
approach

I + expressive
I + can develop special strategies automating common proof patterns
I + automatically check proof after changing specs
I successful in large critical systems, e.g., NASA, JPL, Transportation

system
I - not automatic in general
I - requires expertise

verifying (infinite state) state machines

I fully automatic techniques (model checking) are available for models
with finite states

I alternative approach: use expressive modelling framework, e.g., High
Order Logic, and targeted proof techniques

I a theorem prover such as PVS provides a platform for the latter
approach

I + expressive
I + can develop special strategies automating common proof patterns
I + automatically check proof after changing specs
I successful in large critical systems, e.g., NASA, JPL, Transportation

system
I - not automatic in general
I - requires expertise

verifying (infinite state) state machines

I fully automatic techniques (model checking) are available for models
with finite states

I alternative approach: use expressive modelling framework, e.g., High
Order Logic, and targeted proof techniques

I a theorem prover such as PVS provides a platform for the latter
approach

I + expressive
I + can develop special strategies automating common proof patterns
I + automatically check proof after changing specs
I successful in large critical systems, e.g., NASA, JPL, Transportation

system
I - not automatic in general
I - requires expertise

verifying (infinite state) state machines

I fully automatic techniques (model checking) are available for models
with finite states

I alternative approach: use expressive modelling framework, e.g., High
Order Logic, and targeted proof techniques

I a theorem prover such as PVS provides a platform for the latter
approach

I + expressive
I + can develop special strategies automating common proof patterns
I + automatically check proof after changing specs
I successful in large critical systems, e.g., NASA, JPL, Transportation

system

I - not automatic in general
I - requires expertise

verifying (infinite state) state machines

I fully automatic techniques (model checking) are available for models
with finite states

I alternative approach: use expressive modelling framework, e.g., High
Order Logic, and targeted proof techniques

I a theorem prover such as PVS provides a platform for the latter
approach

I + expressive
I + can develop special strategies automating common proof patterns
I + automatically check proof after changing specs
I successful in large critical systems, e.g., NASA, JPL, Transportation

system
I - not automatic in general
I - requires expertise

current theorem prover technology

proof depth

proof breadth

4 color theorem

sequential algorithms

distributed,

real-time systems,

data structures

current theorem prover technology

proof depth

proof breadth

4 color theorem

sequential algorithms

distributed,

real-time systems,

data structures

overview of tutorial

I quick introduction to PVS—a theorem prover for high-order logic
I PVS specification language
I prover commands

I specifying hybrid/real-time/distributed systems (HIOA) in PVS

I proving properties of using PVS

propositional logic

P := true | false | ¬P1 | P1 ∧ P2 | P1 ∨ P2 | P1 =⇒ P2 | P1 ⇐⇒ P2

sentences are built from finitely many atomic propositions {Pi}

validity and satisfiability of any propositional sentence can be checked by
construcing the truth table

propositional logic is decidable

many interesting problems can be expressed in propositional logic, e.g.,
circuit design, hardware verification

propositional logic

P := true | false | ¬P1 | P1 ∧ P2 | P1 ∨ P2 | P1 =⇒ P2 | P1 ⇐⇒ P2

sentences are built from finitely many atomic propositions {Pi}

validity and satisfiability of any propositional sentence can be checked by
construcing the truth table

propositional logic is decidable

many interesting problems can be expressed in propositional logic, e.g.,
circuit design, hardware verification

propositional logic

P := true | false | ¬P1 | P1 ∧ P2 | P1 ∨ P2 | P1 =⇒ P2 | P1 ⇐⇒ P2

sentences are built from finitely many atomic propositions {Pi}

validity and satisfiability of any propositional sentence can be checked by
construcing the truth table

propositional logic is decidable

many interesting problems can be expressed in propositional logic, e.g.,
circuit design, hardware verification

propositional logic

P := true | false | ¬P1 | P1 ∧ P2 | P1 ∨ P2 | P1 =⇒ P2 | P1 ⇐⇒ P2

sentences are built from finitely many atomic propositions {Pi}

validity and satisfiability of any propositional sentence can be checked by
construcing the truth table

propositional logic is decidable

many interesting problems can be expressed in propositional logic, e.g.,
circuit design, hardware verification

propositional logic

P := true | false | ¬P1 | P1 ∧ P2 | P1 ∨ P2 | P1 =⇒ P2 | P1 ⇐⇒ P2

sentences are built from finitely many atomic propositions {Pi}

validity and satisfiability of any propositional sentence can be checked by
construcing the truth table

propositional logic is decidable

many interesting problems can be expressed in propositional logic, e.g.,
circuit design, hardware verification

first and higher order logic

I most systems cannot be finitely axiomatized in propositional logic
e.g., Archimedean property of reals

I first order logic (FOL):

I quantification over variables: e.g. ∀ x ∈ R, ∃ n ∈ N, n > x
I functions: unary f (x), n-ary g(x1, . . . , xn)
I cannot quantify over functions and predicates

I only certain fragments of FOL are decidable

I E.g., monadic formulas: no function symbols, only unary predicates

I higher order logic (HOL):

I more expressive ⇒ allows natural description of systems
I harder to decide ⇒ fully automatic verification not possible

first and higher order logic

I most systems cannot be finitely axiomatized in propositional logic
e.g., Archimedean property of reals

I first order logic (FOL):

I quantification over variables: e.g. ∀ x ∈ R, ∃ n ∈ N, n > x
I functions: unary f (x), n-ary g(x1, . . . , xn)
I cannot quantify over functions and predicates

I only certain fragments of FOL are decidable

I E.g., monadic formulas: no function symbols, only unary predicates

I higher order logic (HOL):

I more expressive ⇒ allows natural description of systems
I harder to decide ⇒ fully automatic verification not possible

first and higher order logic

I most systems cannot be finitely axiomatized in propositional logic
e.g., Archimedean property of reals

I first order logic (FOL):
I quantification over variables: e.g. ∀ x ∈ R, ∃ n ∈ N, n > x

I functions: unary f (x), n-ary g(x1, . . . , xn)
I cannot quantify over functions and predicates

I only certain fragments of FOL are decidable

I E.g., monadic formulas: no function symbols, only unary predicates

I higher order logic (HOL):

I more expressive ⇒ allows natural description of systems
I harder to decide ⇒ fully automatic verification not possible

first and higher order logic

I most systems cannot be finitely axiomatized in propositional logic
e.g., Archimedean property of reals

I first order logic (FOL):
I quantification over variables: e.g. ∀ x ∈ R, ∃ n ∈ N, n > x
I functions: unary f (x), n-ary g(x1, . . . , xn)

I cannot quantify over functions and predicates

I only certain fragments of FOL are decidable

I E.g., monadic formulas: no function symbols, only unary predicates

I higher order logic (HOL):

I more expressive ⇒ allows natural description of systems
I harder to decide ⇒ fully automatic verification not possible

first and higher order logic

I most systems cannot be finitely axiomatized in propositional logic
e.g., Archimedean property of reals

I first order logic (FOL):
I quantification over variables: e.g. ∀ x ∈ R, ∃ n ∈ N, n > x
I functions: unary f (x), n-ary g(x1, . . . , xn)
I cannot quantify over functions and predicates

I only certain fragments of FOL are decidable

I E.g., monadic formulas: no function symbols, only unary predicates

I higher order logic (HOL):

I more expressive ⇒ allows natural description of systems
I harder to decide ⇒ fully automatic verification not possible

first and higher order logic

I most systems cannot be finitely axiomatized in propositional logic
e.g., Archimedean property of reals

I first order logic (FOL):
I quantification over variables: e.g. ∀ x ∈ R, ∃ n ∈ N, n > x
I functions: unary f (x), n-ary g(x1, . . . , xn)
I cannot quantify over functions and predicates

I only certain fragments of FOL are decidable

I E.g., monadic formulas: no function symbols, only unary predicates

I higher order logic (HOL):

I more expressive ⇒ allows natural description of systems
I harder to decide ⇒ fully automatic verification not possible

first and higher order logic

I most systems cannot be finitely axiomatized in propositional logic
e.g., Archimedean property of reals

I first order logic (FOL):
I quantification over variables: e.g. ∀ x ∈ R, ∃ n ∈ N, n > x
I functions: unary f (x), n-ary g(x1, . . . , xn)
I cannot quantify over functions and predicates

I only certain fragments of FOL are decidable
I E.g., monadic formulas: no function symbols, only unary predicates

I higher order logic (HOL):

I more expressive ⇒ allows natural description of systems
I harder to decide ⇒ fully automatic verification not possible

first and higher order logic

I most systems cannot be finitely axiomatized in propositional logic
e.g., Archimedean property of reals

I first order logic (FOL):
I quantification over variables: e.g. ∀ x ∈ R, ∃ n ∈ N, n > x
I functions: unary f (x), n-ary g(x1, . . . , xn)
I cannot quantify over functions and predicates

I only certain fragments of FOL are decidable
I E.g., monadic formulas: no function symbols, only unary predicates

I higher order logic (HOL):

I more expressive ⇒ allows natural description of systems
I harder to decide ⇒ fully automatic verification not possible

first and higher order logic

I most systems cannot be finitely axiomatized in propositional logic
e.g., Archimedean property of reals

I first order logic (FOL):
I quantification over variables: e.g. ∀ x ∈ R, ∃ n ∈ N, n > x
I functions: unary f (x), n-ary g(x1, . . . , xn)
I cannot quantify over functions and predicates

I only certain fragments of FOL are decidable
I E.g., monadic formulas: no function symbols, only unary predicates

I higher order logic (HOL):
I more expressive ⇒ allows natural description of systems

I harder to decide ⇒ fully automatic verification not possible

first and higher order logic

I most systems cannot be finitely axiomatized in propositional logic
e.g., Archimedean property of reals

I first order logic (FOL):
I quantification over variables: e.g. ∀ x ∈ R, ∃ n ∈ N, n > x
I functions: unary f (x), n-ary g(x1, . . . , xn)
I cannot quantify over functions and predicates

I only certain fragments of FOL are decidable
I E.g., monadic formulas: no function symbols, only unary predicates

I higher order logic (HOL):
I more expressive ⇒ allows natural description of systems
I harder to decide ⇒ fully automatic verification not possible

PVS

I Prototype Verification System (Version 4.1)
http://pvs.csl.sri.com/

I a specification language, a theorem prover, and much more ...

I the PVS specification language is based on HOL; typed lambda
calculus

I the PVS prover is an interactive theorem prover with built-in
semi-decision procedures

I relatively easy to plug in new proof strategies and decision
procedures

I written in LISP, version 4.1 is open source

I PVS system guide
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf

Read chapter 2 for basic instructions about the user interface

I PVS language
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf

I PVS prover guide
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

http://pvs.csl.sri.com/
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

PVS

I Prototype Verification System (Version 4.1)
http://pvs.csl.sri.com/

I a specification language, a theorem prover, and much more ...

I the PVS specification language is based on HOL; typed lambda
calculus

I the PVS prover is an interactive theorem prover with built-in
semi-decision procedures

I relatively easy to plug in new proof strategies and decision
procedures

I written in LISP, version 4.1 is open source

I PVS system guide
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf

Read chapter 2 for basic instructions about the user interface

I PVS language
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf

I PVS prover guide
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

http://pvs.csl.sri.com/
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

PVS

I Prototype Verification System (Version 4.1)
http://pvs.csl.sri.com/

I a specification language, a theorem prover, and much more ...

I the PVS specification language is based on HOL; typed lambda
calculus

I the PVS prover is an interactive theorem prover with built-in
semi-decision procedures

I relatively easy to plug in new proof strategies and decision
procedures

I written in LISP, version 4.1 is open source

I PVS system guide
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf

Read chapter 2 for basic instructions about the user interface

I PVS language
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf

I PVS prover guide
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

http://pvs.csl.sri.com/
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

PVS

I Prototype Verification System (Version 4.1)
http://pvs.csl.sri.com/

I a specification language, a theorem prover, and much more ...

I the PVS specification language is based on HOL; typed lambda
calculus

I the PVS prover is an interactive theorem prover with built-in
semi-decision procedures

I relatively easy to plug in new proof strategies and decision
procedures

I written in LISP, version 4.1 is open source

I PVS system guide
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf

Read chapter 2 for basic instructions about the user interface

I PVS language
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf

I PVS prover guide
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

http://pvs.csl.sri.com/
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

PVS

I Prototype Verification System (Version 4.1)
http://pvs.csl.sri.com/

I a specification language, a theorem prover, and much more ...

I the PVS specification language is based on HOL; typed lambda
calculus

I the PVS prover is an interactive theorem prover with built-in
semi-decision procedures

I relatively easy to plug in new proof strategies and decision
procedures

I written in LISP, version 4.1 is open source

I PVS system guide
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf

Read chapter 2 for basic instructions about the user interface

I PVS language
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf

I PVS prover guide
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

http://pvs.csl.sri.com/
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

PVS

I Prototype Verification System (Version 4.1)
http://pvs.csl.sri.com/

I a specification language, a theorem prover, and much more ...

I the PVS specification language is based on HOL; typed lambda
calculus

I the PVS prover is an interactive theorem prover with built-in
semi-decision procedures

I relatively easy to plug in new proof strategies and decision
procedures

I written in LISP, version 4.1 is open source

I PVS system guide
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf

Read chapter 2 for basic instructions about the user interface

I PVS language
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf

I PVS prover guide
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

http://pvs.csl.sri.com/
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

PVS

I Prototype Verification System (Version 4.1)
http://pvs.csl.sri.com/

I a specification language, a theorem prover, and much more ...

I the PVS specification language is based on HOL; typed lambda
calculus

I the PVS prover is an interactive theorem prover with built-in
semi-decision procedures

I relatively easy to plug in new proof strategies and decision
procedures

I written in LISP, version 4.1 is open source

I PVS system guide
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf

Read chapter 2 for basic instructions about the user interface

I PVS language
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf

I PVS prover guide
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

http://pvs.csl.sri.com/
http://pvs.csl.sri.com/doc/pvs-system-guide.pdf
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

theorem proving and other areas

theorem proving

verification

functionallogic/math

programming

PVS

proof

methods

decision
procedures LISP

theorem proving and other areas

theorem proving

verification

functionallogic/math

programming

PVS

proof

methods

decision
procedures LISP

theorem proving and other areas

theorem proving

verification

functional

logic/math

programming

PVS

proof

methods

decision
procedures LISP

theorem proving and other areas

theorem proving

verification

functionallogic/math

programming

PVS

proof

methods

decision
procedures LISP

theorem proving and other areas

theorem proving

verification

functionallogic/math

programming

PVS

proof

methods

decision
procedures LISP

theorem proving and other areas

theorem proving

verification

functionallogic/math

programming

PVS

proof

methods

decision
procedures LISP

example 1: a theory of stack of integers

Stack: theory begin

Stack: type = [# length: nat, seq: [below[length] -> nat] #]

NonEmptyStack?(c:Stack): bool = c‘length /= 0

NonEmptyStack: type = (NonEmptyStack?)

length(c:Stack):nat = c‘length

top(c:NonEmptyStack):nat = q‘seq(length(c)-1)

push(c:stack, a:nat):NonEmptyStack =
(# length := c‘length + 1,
seq := seq(c) with [(c‘length) := a] #)

pop(c:NonEmptyStack):[Stack,nat]

end Stack

example 1: a theory of stack of integers

Stack: theory begin

Stack: type = [# length: nat, seq: [below[length] -> nat] #]

NonEmptyStack?(c:Stack): bool = c‘length /= 0

NonEmptyStack: type = (NonEmptyStack?)

length(c:Stack):nat = c‘length

top(c:NonEmptyStack):nat = q‘seq(length(c)-1)

push(c:stack, a:nat):NonEmptyStack =
(# length := c‘length + 1,
seq := seq(c) with [(c‘length) := a] #)

pop(c:NonEmptyStack):[Stack,nat]

end Stack

example 1: a theory of stack of integers

Stack: theory begin

Stack: type = [# length: nat, seq: [below[length] -> nat] #]

NonEmptyStack?(c:Stack): bool = c‘length /= 0

NonEmptyStack: type = (NonEmptyStack?)

length(c:Stack):nat = c‘length

top(c:NonEmptyStack):nat = q‘seq(length(c)-1)

push(c:stack, a:nat):NonEmptyStack =
(# length := c‘length + 1,
seq := seq(c) with [(c‘length) := a] #)

pop(c:NonEmptyStack):[Stack,nat]

end Stack

example 1: a theory of stack of integers

Stack: theory begin

Stack: type = [# length: nat, seq: [below[length] -> nat] #]

NonEmptyStack?(c:Stack): bool = c‘length /= 0

NonEmptyStack: type = (NonEmptyStack?)

length(c:Stack):nat = c‘length

top(c:NonEmptyStack):nat = q‘seq(length(c)-1)

push(c:stack, a:nat):NonEmptyStack =
(# length := c‘length + 1,
seq := seq(c) with [(c‘length) := a] #)

pop(c:NonEmptyStack):[Stack,nat]

end Stack

basic concepts

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., top, or
uninterpreted, e.g., pop

I a predicate B on type T automatically defines a subtype (B) of T ,
e.g., (NonEmptyStack?) is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

basic concepts

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·

I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., top, or
uninterpreted, e.g., pop

I a predicate B on type T automatically defines a subtype (B) of T ,
e.g., (NonEmptyStack?) is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

basic concepts

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·

I all functions are total

I type/function definitions can be concrete, e.g., top, or
uninterpreted, e.g., pop

I a predicate B on type T automatically defines a subtype (B) of T ,
e.g., (NonEmptyStack?) is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

basic concepts

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., top, or
uninterpreted, e.g., pop

I a predicate B on type T automatically defines a subtype (B) of T ,
e.g., (NonEmptyStack?) is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

basic concepts

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., top, or
uninterpreted, e.g., pop

I a predicate B on type T automatically defines a subtype (B) of T ,
e.g., (NonEmptyStack?) is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

basic concepts

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., top, or
uninterpreted, e.g., pop

I a predicate B on type T automatically defines a subtype (B) of T ,
e.g., (NonEmptyStack?) is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

basic concepts

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., top, or
uninterpreted, e.g., pop

I a predicate B on type T automatically defines a subtype (B) of T ,
e.g., (NonEmptyStack?) is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

basic concepts

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., top, or
uninterpreted, e.g., pop

I a predicate B on type T automatically defines a subtype (B) of T ,
e.g., (NonEmptyStack?) is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

some properties of stacks

Stack: theory begin

. . .
c: var Stack
a: var nat

nonempty: lemma forall (c,a): NonEmptyStack?(push(c,a))

idem : lemma forall (c, a): pop(push(c , a))‘1 = c

pushpop: lemma forall (c, a): pop(push(c,a))‘2 = a

end Stack

a polymorphic stack

Stack[T:type+]: theory begin

Stack: type = [# length: nat, seq: [below[length] -> T] #]
. . .
c: var Stack
a: var T

nonempty: lemma forall (c,a): NonEmptyStack?(push(c,a))

idem : lemma forall (c, a): pop(push(c , a))‘1 = c

pushpop: lemma forall (c, a): pop(push(c,a))‘2 = a

end Stack

inductive definitions and recursive functions

even(n:nat): inductive bool = n = 0 or n > 1 and even(n-2)

fact(n:nat): recursive nat = if n = 0 then 1 else n ∗ fact(n-1) endif
measure lambda (n:nat):n

I inductive definitions cannot be used as rewrite rules

I mutual recursion not allowed

I domain of the measure function is the same domain as the recursive
function being defined and its range must be a well-founded set with
a order relation

inductive definitions and recursive functions

even(n:nat): inductive bool = n = 0 or n > 1 and even(n-2)

fact(n:nat): recursive nat = if n = 0 then 1 else n ∗ fact(n-1) endif
measure lambda (n:nat):n

I inductive definitions cannot be used as rewrite rules

I mutual recursion not allowed

I domain of the measure function is the same domain as the recursive
function being defined and its range must be a well-founded set with
a order relation

inductive definitions and recursive functions

even(n:nat): inductive bool = n = 0 or n > 1 and even(n-2)

fact(n:nat): recursive nat = if n = 0 then 1 else n ∗ fact(n-1) endif
measure lambda (n:nat):n

I inductive definitions cannot be used as rewrite rules

I mutual recursion not allowed

I domain of the measure function is the same domain as the recursive
function being defined and its range must be a well-founded set with
a order relation

inductive definitions and recursive functions

even(n:nat): inductive bool = n = 0 or n > 1 and even(n-2)

fact(n:nat): recursive nat = if n = 0 then 1 else n ∗ fact(n-1) endif
measure lambda (n:nat):n

I inductive definitions cannot be used as rewrite rules

I mutual recursion not allowed

I domain of the measure function is the same domain as the recursive
function being defined and its range must be a well-founded set with
a order relation

inductive definitions and recursive functions

even(n:nat): inductive bool = n = 0 or n > 1 and even(n-2)

fact(n:nat): recursive nat = if n = 0 then 1 else n ∗ fact(n-1) endif
measure lambda (n:nat):n

I inductive definitions cannot be used as rewrite rules

I mutual recursion not allowed

I domain of the measure function is the same domain as the recursive
function being defined and its range must be a well-founded set with
a order relation

polymorphic theory of automata

simplemachine[
states, actions: type,
enabled: [actions,states -> bool],
trans: [actions,states -> states],
start: [states -> bool]
]: theory

reachable hidden(s,n): recursive bool =
if n = 0 then start(s)
else (exists a, s1 : reachable hidden(s1,n -1) and
enabled(a,s1) and s = trans(a,s1))
endif

measure (lambda s,n: n)

reachable(s): bool = exists n : reachable hidden(s,n)

polymorphic theory of automata

simplemachine[
states, actions: type,
enabled: [actions,states -> bool],
trans: [actions,states -> states],
start: [states -> bool]
]: theory

reachable hidden(s,n): recursive bool =
if n = 0 then start(s)
else (exists a, s1 : reachable hidden(s1,n -1) and
enabled(a,s1) and s = trans(a,s1))
endif

measure (lambda s,n: n)

reachable(s): bool = exists n : reachable hidden(s,n)

polymorphic theory of automata

simplemachine[
states, actions: type,
enabled: [actions,states -> bool],
trans: [actions,states -> states],
start: [states -> bool]
]: theory

reachable hidden(s,n): recursive bool =
if n = 0 then start(s)
else (exists a, s1 : reachable hidden(s1,n -1) and
enabled(a,s1) and s = trans(a,s1))
endif

measure (lambda s,n: n)

reachable(s): bool = exists n : reachable hidden(s,n)

polymorphic theory of automata

simplemachine[
states, actions: type,
enabled: [actions,states -> bool],
trans: [actions,states -> states],
start: [states -> bool]
]: theory

reachable hidden(s,n): recursive bool =
if n = 0 then start(s)
else (exists a, s1 : reachable hidden(s1,n -1) and
enabled(a,s1) and s = trans(a,s1))
endif

measure (lambda s,n: n)

reachable(s): bool = exists n : reachable hidden(s,n)

polymorphic theory of automata

base(Inv) : bool = forall s: start(s)
implies Inv(s)

inductstep(Inv) : bool = forall s, a: reachable(s) and Inv(s) and
enabled(a,s) implies Inv(trans(a,s))

inductthm(Inv): bool = base(Inv) and inductstep(Inv)
implies (forall s : reachable(s) implies Inv(s))

polymorphic theory of automata

base(Inv) : bool = forall s: start(s)
implies Inv(s)

inductstep(Inv) : bool = forall s, a: reachable(s) and Inv(s) and
enabled(a,s) implies Inv(trans(a,s))

inductthm(Inv): bool = base(Inv) and inductstep(Inv)
implies (forall s : reachable(s) implies Inv(s))

example: specifying an automaton

an automaton is specified by the following components:

I states:type+

I actions:type

I enabled:[states, actions -> bool]

I trans:[states, actions -> states]

does this force transitions to be deterministic?

no! push internal nondeterministic choices to (external) choice over
actions

example: specifying an automaton

an automaton is specified by the following components:

I states:type+

I actions:type

I enabled:[states, actions -> bool]

I trans:[states, actions -> states]

does this force transitions to be deterministic?

no! push internal nondeterministic choices to (external) choice over
actions

example: specifying an automaton

an automaton is specified by the following components:

I states:type+

I actions:type

I enabled:[states, actions -> bool]

I trans:[states, actions -> states]

does this force transitions to be deterministic?

no! push internal nondeterministic choices to (external) choice over
actions

example: specifying an automaton

an automaton is specified by the following components:

I states:type+

I actions:type

I enabled:[states, actions -> bool]

I trans:[states, actions -> states]

does this force transitions to be deterministic?

no! push internal nondeterministic choices to (external) choice over
actions

example: specifying an automaton

an automaton is specified by the following components:

I states:type+

I actions:type

I enabled:[states, actions -> bool]

I trans:[states, actions -> states]

does this force transitions to be deterministic?

no! push internal nondeterministic choices to (external) choice over
actions

example: specifying an automaton

an automaton is specified by the following components:

I states:type+

I actions:type

I enabled:[states, actions -> bool]

I trans:[states, actions -> states]

does this force transitions to be deterministic?

no! push internal nondeterministic choices to (external) choice over
actions

many more types of types

I enumerations color: type = [red, orange, green]

I tuple states: type = [nat, real, color]

I record states2: type = [# counter:nat, timer:real, light:color #]

I functions
Values: type = [I -> nat]

Values: type = function [I -> nat]

Values: type = array [I -> nat]

I dependent types

Queue: [# length: nat, seq:[{n:nat |n < length} -> t] #]

many more types of types

I enumerations color: type = [red, orange, green]

I tuple states: type = [nat, real, color]

I record states2: type = [# counter:nat, timer:real, light:color #]

I functions
Values: type = [I -> nat]

Values: type = function [I -> nat]

Values: type = array [I -> nat]

I dependent types

Queue: [# length: nat, seq:[{n:nat |n < length} -> t] #]

many more types of types

I enumerations color: type = [red, orange, green]

I tuple states: type = [nat, real, color]

I record states2: type = [# counter:nat, timer:real, light:color #]

I functions
Values: type = [I -> nat]

Values: type = function [I -> nat]

Values: type = array [I -> nat]

I dependent types

Queue: [# length: nat, seq:[{n:nat |n < length} -> t] #]

many more types of types

I enumerations color: type = [red, orange, green]

I tuple states: type = [nat, real, color]

I record states2: type = [# counter:nat, timer:real, light:color #]

I functions
Values: type = [I -> nat]

Values: type = function [I -> nat]

Values: type = array [I -> nat]

I dependent types

Queue: [# length: nat, seq:[{n:nat |n < length} -> t] #]

many more types of types

I enumerations color: type = [red, orange, green]

I tuple states: type = [nat, real, color]

I record states2: type = [# counter:nat, timer:real, light:color #]

I functions
Values: type = [I -> nat]

Values: type = function [I -> nat]

Values: type = array [I -> nat]

I dependent types

Queue: [# length: nat, seq:[{n:nat |n < length} -> t] #]

many more types of types

I enumerations color: type = [red, orange, green]

I tuple states: type = [nat, real, color]

I record states2: type = [# counter:nat, timer:real, light:color #]

I functions
Values: type = [I -> nat]

Values: type = function [I -> nat]

Values: type = array [I -> nat]

I dependent types

Queue: [# length: nat, seq:[{n:nat |n < length} -> t] #]

ID:type = {1,2,3,4}
location:type = [x:real, y:real]

states: [# pos:[ID -> location], clock:[ID -> posreal], failed:[ID -> bool] #]

abstract datatypes

an abstract datatype defines a collection of objects through constructors
and recognizers.

actions: datatype
fail(i:ID):fail?
time elapse(t:posreal):time elapse?
send(i:ID,m:location):send?
receive(i:ID,m:location):receive?
end actions

I defines a new type called actions

I a f3: actions = fail(3) is a constant of type action

I fail?(a f3) returns true
I time elapse?(a f3) returns false
I i(a f3) returns 3
I what is i(time elapse(10)) ?

abstract datatypes

an abstract datatype defines a collection of objects through constructors
and recognizers.

actions: datatype
fail(i:ID):fail?
time elapse(t:posreal):time elapse?
send(i:ID,m:location):send?
receive(i:ID,m:location):receive?
end actions

I defines a new type called actions

I a f3: actions = fail(3) is a constant of type action

I fail?(a f3) returns true
I time elapse?(a f3) returns false
I i(a f3) returns 3
I what is i(time elapse(10)) ?

abstract datatypes

an abstract datatype defines a collection of objects through constructors
and recognizers.

actions: datatype
fail(i:ID):fail?
time elapse(t:posreal):time elapse?
send(i:ID,m:location):send?
receive(i:ID,m:location):receive?
end actions

I defines a new type called actions

I a f3: actions = fail(3) is a constant of type action

I fail?(a f3) returns true
I time elapse?(a f3) returns false
I i(a f3) returns 3
I what is i(time elapse(10)) ?

abstract datatypes

an abstract datatype defines a collection of objects through constructors
and recognizers.

actions: datatype
fail(i:ID):fail?
time elapse(t:posreal):time elapse?
send(i:ID,m:location):send?
receive(i:ID,m:location):receive?
end actions

I defines a new type called actions

I a f3: actions = fail(3) is a constant of type action

I fail?(a f3) returns true
I time elapse?(a f3) returns false
I i(a f3) returns 3
I what is i(time elapse(10)) ?

abstract datatypes

an abstract datatype defines a collection of objects through constructors
and recognizers.

actions: datatype
fail(i:ID):fail?
time elapse(t:posreal):time elapse?
send(i:ID,m:location):send?
receive(i:ID,m:location):receive?
end actions

I defines a new type called actions

I a f3: actions = fail(3) is a constant of type action

I fail?(a f3) returns true

I time elapse?(a f3) returns false
I i(a f3) returns 3
I what is i(time elapse(10)) ?

abstract datatypes

an abstract datatype defines a collection of objects through constructors
and recognizers.

actions: datatype
fail(i:ID):fail?
time elapse(t:posreal):time elapse?
send(i:ID,m:location):send?
receive(i:ID,m:location):receive?
end actions

I defines a new type called actions

I a f3: actions = fail(3) is a constant of type action

I fail?(a f3) returns true
I time elapse?(a f3) returns false

I i(a f3) returns 3
I what is i(time elapse(10)) ?

abstract datatypes

an abstract datatype defines a collection of objects through constructors
and recognizers.

actions: datatype
fail(i:ID):fail?
time elapse(t:posreal):time elapse?
send(i:ID,m:location):send?
receive(i:ID,m:location):receive?
end actions

I defines a new type called actions

I a f3: actions = fail(3) is a constant of type action

I fail?(a f3) returns true
I time elapse?(a f3) returns false
I i(a f3) returns 3

I what is i(time elapse(10)) ?

abstract datatypes

an abstract datatype defines a collection of objects through constructors
and recognizers.

actions: datatype
fail(i:ID):fail?
time elapse(t:posreal):time elapse?
send(i:ID,m:location):send?
receive(i:ID,m:location):receive?
end actions

I defines a new type called actions

I a f3: actions = fail(3) is a constant of type action

I fail?(a f3) returns true
I time elapse?(a f3) returns false
I i(a f3) returns 3
I what is i(time elapse(10)) ?

defining enabling conditions and transitions

enabled(a:actions, s:states):bool =
cases a of
fail(i):
not failed(s)(i)

send(i,m):
pos(s)(i) = m
...
endcases

trans(a:actions, s:states):states =
cases a of
time elapse(t):
s with [clock := clock(s) + t]

fail(i):
s with [failed := failed(s) with [(i) := true]
...
endcases

defining enabling conditions and transitions

enabled(a:actions, s:states):bool =
cases a of
fail(i):
not failed(s)(i)

send(i,m):
pos(s)(i) = m
...
endcases

trans(a:actions, s:states):states =
cases a of
time elapse(t):
s with [clock := clock(s) + t]

fail(i):
s with [failed := failed(s) with [(i) := true]
...
endcases

defining enabling conditions and transitions

enabled(a:actions, s:states):bool =
cases a of
fail(i):
not failed(s)(i)

send(i,m):
pos(s)(i) = m
...
endcases

trans(a:actions, s:states):states =
cases a of
time elapse(t):
s with [clock := clock(s) + t]

fail(i):
s with [failed := failed(s) with [(i) := true]
...
endcases

defining enabling conditions and transitions

enabled(a:actions, s:states):bool =
cases a of
fail(i):
not failed(s)(i)

send(i,m):
pos(s)(i) = m
...
endcases

trans(a:actions, s:states):states =
cases a of
time elapse(t):
s with [clock := clock(s) + t]

fail(i):
s with [failed := failed(s) with [(i) := true]
...
endcases

review of language constructs

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., add(x,y:real): real = x + y,
or uninterpreted, e.g., foo(x , y : real) : real

I a predicate on type T is a function of type [T -> bool], e.g.,
NonEmptyStack?(s:Stack):bool = s‘length = 0

I a predicate on type T automatically defines a subtype of T, e.g.,
NonEmptyStack? is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

review of language constructs

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·

I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., add(x,y:real): real = x + y,
or uninterpreted, e.g., foo(x , y : real) : real

I a predicate on type T is a function of type [T -> bool], e.g.,
NonEmptyStack?(s:Stack):bool = s‘length = 0

I a predicate on type T automatically defines a subtype of T, e.g.,
NonEmptyStack? is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

review of language constructs

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·

I all functions are total

I type/function definitions can be concrete, e.g., add(x,y:real): real = x + y,
or uninterpreted, e.g., foo(x , y : real) : real

I a predicate on type T is a function of type [T -> bool], e.g.,
NonEmptyStack?(s:Stack):bool = s‘length = 0

I a predicate on type T automatically defines a subtype of T, e.g.,
NonEmptyStack? is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

review of language constructs

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., add(x,y:real): real = x + y,
or uninterpreted, e.g., foo(x , y : real) : real

I a predicate on type T is a function of type [T -> bool], e.g.,
NonEmptyStack?(s:Stack):bool = s‘length = 0

I a predicate on type T automatically defines a subtype of T, e.g.,
NonEmptyStack? is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

review of language constructs

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., add(x,y:real): real = x + y,
or uninterpreted, e.g., foo(x , y : real) : real

I a predicate on type T is a function of type [T -> bool], e.g.,
NonEmptyStack?(s:Stack):bool = s‘length = 0

I a predicate on type T automatically defines a subtype of T, e.g.,
NonEmptyStack? is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

review of language constructs

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., add(x,y:real): real = x + y,
or uninterpreted, e.g., foo(x , y : real) : real

I a predicate on type T is a function of type [T -> bool], e.g.,
NonEmptyStack?(s:Stack):bool = s‘length = 0

I a predicate on type T automatically defines a subtype of T, e.g.,
NonEmptyStack? is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

review of language constructs

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., add(x,y:real): real = x + y,
or uninterpreted, e.g., foo(x , y : real) : real

I a predicate on type T is a function of type [T -> bool], e.g.,
NonEmptyStack?(s:Stack):bool = s‘length = 0

I a predicate on type T automatically defines a subtype of T, e.g.,
NonEmptyStack? is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

review of language constructs

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., add(x,y:real): real = x + y,
or uninterpreted, e.g., foo(x , y : real) : real

I a predicate on type T is a function of type [T -> bool], e.g.,
NonEmptyStack?(s:Stack):bool = s‘length = 0

I a predicate on type T automatically defines a subtype of T, e.g.,
NonEmptyStack? is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

review of language constructs

I theory: a collection of type and function definitions, axioms, and
theorems

I built in types: nat, bool, real, · · ·
I type constructores: finite sequences, records, sets, arrays, · · ·
I all functions are total

I type/function definitions can be concrete, e.g., add(x,y:real): real = x + y,
or uninterpreted, e.g., foo(x , y : real) : real

I a predicate on type T is a function of type [T -> bool], e.g.,
NonEmptyStack?(s:Stack):bool = s‘length = 0

I a predicate on type T automatically defines a subtype of T, e.g.,
NonEmptyStack? is a subtype of Stack

I all assignments and definitions must be type-correct

I typechecking is in general undecidable; PVS generates proof
obligations or type correctness conditions (TCCs). E.g., application
of pop(c) generates the TCC NonEmptyStack?(c)

PVS prover

I user interacts with PVS to construct a proof tree

I each node of the tree is a proof goal

I parent goal follows from the children by means of a proof step

main goal

cmd1

goal

cmd2

goal.1

cmd3

�

goal.2

cmd4

goal2.1 goal2.2

proof goals and sequents

a proof goal is a sequent a sequence of formulas

a sequent S is represented as represented as

{-1} A1
{-2} A2
[-3] A3
...
` − −
{-1} B1
[-2] B2
[-3] B3
....

A1, A2, A3, ... are called antecedents and B1, B2, B3, ... are consequents
interpretation: A1 ∧ A2 ∧ A3 ∧ . . . =⇒ B1 ∨ B2 ∨ B3 ∨ . . .

proof goals and sequents

a proof goal is a sequent a sequence of formulas
a sequent S is represented as represented as

{-1} A1
{-2} A2
[-3] A3
...
` − −
{-1} B1
[-2] B2
[-3] B3
....

A1, A2, A3, ... are called antecedents and B1, B2, B3, ... are consequents
interpretation: A1 ∧ A2 ∧ A3 ∧ . . . =⇒ B1 ∨ B2 ∨ B3 ∨ . . .

proof goals and sequents

a proof goal is a sequent a sequence of formulas
a sequent S is represented as represented as

{-1} A1
{-2} A2
[-3] A3
...
` − −
{-1} B1
[-2] B2
[-3] B3
....

A1, A2, A3, ... are called antecedents and B1, B2, B3, ... are consequents
interpretation: A1 ∧ A2 ∧ A3 ∧ . . . =⇒ B1 ∨ B2 ∨ B3 ∨ . . .

proof goals and sequents

a proof goal is a sequent a sequence of formulas
a sequent S is represented as represented as

{-1} A1
{-2} A2
[-3] A3
...
` − −
{-1} B1
[-2] B2
[-3] B3
....

A1, A2, A3, ... are called antecedents and B1, B2, B3, ... are consequents

interpretation: A1 ∧ A2 ∧ A3 ∧ . . . =⇒ B1 ∨ B2 ∨ B3 ∨ . . .

proof goals and sequents

a proof goal is a sequent a sequence of formulas
a sequent S is represented as represented as

{-1} A1
{-2} A2
[-3] A3
...
` − −
{-1} B1
[-2] B2
[-3] B3
....

A1, A2, A3, ... are called antecedents and B1, B2, B3, ... are consequents
interpretation: A1 ∧ A2 ∧ A3 ∧ . . . =⇒ B1 ∨ B2 ∨ B3 ∨ . . .

PVS prover commands

I primitive rules
I propositional rules
I quantifier rules
I equality rules
I structural rules
I control rules
I others: using lemmas, induction, extensionality, decision procedures

I commands and keywords for combining primitive rules into strategies
(not covered in this lecture)

PVS prover commands

I primitive rules
I propositional rules
I quantifier rules
I equality rules
I structural rules
I control rules
I others: using lemmas, induction, extensionality, decision procedures

I commands and keywords for combining primitive rules into strategies
(not covered in this lecture)

propositional rules: flatten

performs disjunctive simplification

{-1} A1
{-2} not A2
` − −
{1} B1

Rule ? (flatten)

[-1] A1
` − −
[1] B1
{2} A2

[-1] A1 and A2
` − −
{1} B1 implies B2

Rule ? (flatten)

{-1} A1
{-2} A2
{-3} B1
` − −
{1} B2

propositional rules: flatten

performs disjunctive simplification

{-1} A1
{-2} not A2
` − −
{1} B1

Rule ? (flatten)

[-1] A1
` − −
[1] B1
{2} A2

[-1] A1 and A2
` − −
{1} B1 implies B2

Rule ? (flatten)

{-1} A1
{-2} A2
{-3} B1
` − −
{1} B2

propositional rules: flatten

performs disjunctive simplification

{-1} A1
{-2} not A2
` − −
{1} B1

Rule ? (flatten)

[-1] A1
` − −
[1] B1
{2} A2

[-1] A1 and A2
` − −
{1} B1 implies B2

Rule ? (flatten)

{-1} A1
{-2} A2
{-3} B1
` − −
{1} B2

propositional rules: flatten

performs disjunctive simplification

{-1} A1
{-2} not A2
` − −
{1} B1

Rule ? (flatten)

[-1] A1
` − −
[1] B1
{2} A2

[-1] A1 and A2
` − −
{1} B1 implies B2

Rule ? (flatten)

{-1} A1
{-2} A2
{-3} B1
` − −
{1} B2

propositional rules: split
splits a conjunctive formula in the current goal and collects the resulting
subgoal(s)

{-1} A1
` − −
{1} B1 and B2

Rule ? (split 1)

Subgoal.1
[-1] A1
` − −
{1} B1

Subgoal.2
[-1] A1
` − −
{1} B2

` − −
[1] A1 iff A2

Rule ? (split)

Subgoal.1
` − −
{1} A1 implies A2

Subgoal.2
` − −
{1} A2 implies A1

propositional rules: split
splits a conjunctive formula in the current goal and collects the resulting
subgoal(s)

{-1} A1
` − −
{1} B1 and B2

Rule ? (split 1)

Subgoal.1
[-1] A1
` − −
{1} B1

Subgoal.2
[-1] A1
` − −
{1} B2

` − −
[1] A1 iff A2

Rule ? (split)

Subgoal.1
` − −
{1} A1 implies A2

Subgoal.2
` − −
{1} A2 implies A1

propositional rules: split
splits a conjunctive formula in the current goal and collects the resulting
subgoal(s)

{-1} A1
` − −
{1} B1 and B2

Rule ? (split 1)

Subgoal.1
[-1] A1
` − −
{1} B1

Subgoal.2
[-1] A1
` − −
{1} B2

` − −
[1] A1 iff A2

Rule ? (split)

Subgoal.1
` − −
{1} A1 implies A2

Subgoal.2
` − −
{1} A2 implies A1

propositional rules: split
splits a conjunctive formula in the current goal and collects the resulting
subgoal(s)

{-1} A1
` − −
{1} B1 and B2

Rule ? (split 1)

Subgoal.1
[-1] A1
` − −
{1} B1

Subgoal.2
[-1] A1
` − −
{1} B2

` − −
[1] A1 iff A2

Rule ? (split)

Subgoal.1
` − −
{1} A1 implies A2

Subgoal.2
` − −
{1} A2 implies A1

propositional rules: split
splits a conjunctive formula in the current goal and collects the resulting
subgoal(s)

{-1} A1
` − −
{1} B1 and B2

Rule ? (split 1)

Subgoal.1
[-1] A1
` − −
{1} B1

Subgoal.2
[-1] A1
` − −
{1} B2

` − −
[1] A1 iff A2

Rule ? (split)

Subgoal.1
` − −
{1} A1 implies A2

Subgoal.2
` − −
{1} A2 implies A1

propositional rules: lift-if
lifts branching structure to the top level

` − −
{1} foo(IF(A,B,C))

Rule ? (lift-if)

` − −
[1] IF(A, foo(B), foo(C))

Rule ? (split)

Subgoal.1
` − −
{1} A implies foo(B)

Subgoal.2
` − −
{1} not A implies foo(C)

Subgoal.1
{-1} A
` − −
{1} foo(B)

Subgoal.2
` − −
{1} A
{2} foo(C)

propositional rules: lift-if
lifts branching structure to the top level

` − −
{1} foo(IF(A,B,C))

Rule ? (lift-if)

` − −
[1] IF(A, foo(B), foo(C))

Rule ? (split)

Subgoal.1
` − −
{1} A implies foo(B)

Subgoal.2
` − −
{1} not A implies foo(C)

Subgoal.1
{-1} A
` − −
{1} foo(B)

Subgoal.2
` − −
{1} A
{2} foo(C)

propositional rules: lift-if
lifts branching structure to the top level

` − −
{1} foo(IF(A,B,C))

Rule ? (lift-if)

` − −
[1] IF(A, foo(B), foo(C))

Rule ? (split)

Subgoal.1
` − −
{1} A implies foo(B)

Subgoal.2
` − −
{1} not A implies foo(C)

Subgoal.1
{-1} A
` − −
{1} foo(B)

Subgoal.2
` − −
{1} A
{2} foo(C)

propositional rules: lift-if
lifts branching structure to the top level

` − −
{1} foo(IF(A,B,C))

Rule ? (lift-if)

` − −
[1] IF(A, foo(B), foo(C))

Rule ? (split)

Subgoal.1
` − −
{1} A implies foo(B)

Subgoal.2
` − −
{1} not A implies foo(C)

Subgoal.1
{-1} A
` − −
{1} foo(B)

Subgoal.2
` − −
{1} A
{2} foo(C)

propositional rules: lift-if
lifts branching structure to the top level

` − −
{1} foo(IF(A,B,C))

Rule ? (lift-if)

` − −
[1] IF(A, foo(B), foo(C))

Rule ? (split)

Subgoal.1
` − −
{1} A implies foo(B)

Subgoal.2
` − −
{1} not A implies foo(C)

Subgoal.1
{-1} A
` − −
{1} foo(B)

Subgoal.2
` − −
{1} A
{2} foo(C)

propositional rules: lift-if
lifts branching structure to the top level

` − −
{1} foo(IF(A,B,C))

Rule ? (lift-if)

` − −
[1] IF(A, foo(B), foo(C))

Rule ? (split)

Subgoal.1
` − −
{1} A implies foo(B)

Subgoal.2
` − −
{1} not A implies foo(C)

Subgoal.1
{-1} A
` − −
{1} foo(B)

Subgoal.2
` − −
{1} A
{2} foo(C)

propositional rules: case

splits current proof goal based on sequence of assumptions

[-1] A
` − −
{1} B

Rule ? (case C1 C2)

Subgoal.1

{-1} C2
{-2} C1
[-3] A
` − −
[1] B

Subgoal.2

{-1} C1
[-2] A
` − −
{1} C2
[2] B

Subgoal.3

[-1] A
` − −
{1} C1
[2] B

propositional rules: case

splits current proof goal based on sequence of assumptions

[-1] A
` − −
{1} B

Rule ? (case C1 C2)

Subgoal.1

{-1} C2
{-2} C1
[-3] A
` − −
[1] B

Subgoal.2

{-1} C1
[-2] A
` − −
{1} C2
[2] B

Subgoal.3

[-1] A
` − −
{1} C1
[2] B

propositional rules: case

splits current proof goal based on sequence of assumptions

[-1] A
` − −
{1} B

Rule ? (case C1 C2)

Subgoal.1

{-1} C2
{-2} C1
[-3] A
` − −
[1] B

Subgoal.2

{-1} C1
[-2] A
` − −
{1} C2
[2] B

Subgoal.3

[-1] A
` − −
{1} C1
[2] B

quantifier rules: skolem, skolem! , and typepred
replace universally quantified variables with constants

{-1} A1
` − −
{1} Forall (s:Start): B1(s)

Rule ? (skolem (”s1”))

[-1] A1
` − −
{1} B1(s1)

Rule ? (typepred ”s1”)

{-1} Start(s1)
[-2] A1
` − −
[1] B1(s1)

{-1} Exists (s:Start): A1(s)
` − −
{1} B1

Rule ? (skolem ”s0”)

{-1} A1(s0)
` − −
{1} B1

quantifier rules: skolem, skolem! , and typepred
replace universally quantified variables with constants

{-1} A1
` − −
{1} Forall (s:Start): B1(s)

Rule ? (skolem (”s1”))

[-1] A1
` − −
{1} B1(s1)

Rule ? (typepred ”s1”)

{-1} Start(s1)
[-2] A1
` − −
[1] B1(s1)

{-1} Exists (s:Start): A1(s)
` − −
{1} B1

Rule ? (skolem ”s0”)

{-1} A1(s0)
` − −
{1} B1

quantifier rules: skolem, skolem! , and typepred
replace universally quantified variables with constants

{-1} A1
` − −
{1} Forall (s:Start): B1(s)

Rule ? (skolem (”s1”))

[-1] A1
` − −
{1} B1(s1)

Rule ? (typepred ”s1”)

{-1} Start(s1)
[-2] A1
` − −
[1] B1(s1)

{-1} Exists (s:Start): A1(s)
` − −
{1} B1

Rule ? (skolem ”s0”)

{-1} A1(s0)
` − −
{1} B1

quantifier rules: skolem, skolem! , and typepred
replace universally quantified variables with constants

{-1} A1
` − −
{1} Forall (s:Start): B1(s)

Rule ? (skolem (”s1”))

[-1] A1
` − −
{1} B1(s1)

Rule ? (typepred ”s1”)

{-1} Start(s1)
[-2] A1
` − −
[1] B1(s1)

{-1} Exists (s:Start): A1(s)
` − −
{1} B1

Rule ? (skolem ”s0”)

{-1} A1(s0)
` − −
{1} B1

quantifier rules: skolem, skolem! , and typepred
replace universally quantified variables with constants

{-1} A1
` − −
{1} Forall (s:Start): B1(s)

Rule ? (skolem (”s1”))

[-1] A1
` − −
{1} B1(s1)

Rule ? (typepred ”s1”)

{-1} Start(s1)
[-2] A1
` − −
[1] B1(s1)

{-1} Exists (s:Start): A1(s)
` − −
{1} B1

Rule ? (skolem ”s0”)

{-1} A1(s0)
` − −
{1} B1

quantifier rules and introducing lemmas

{-1} A1
` − −
{1} Exists (n:nat): B1(n)
Rule ? (inst 1 (n ”5”))

[-1] A1
` − −
{1} B1(5)

Suppose we have:

Fact: Lemma Exists(n): P(n)

ongoing proof sequent...

{-1} Forall(n): P(n) ⇒ Q(n)
` − −
{1} Exists(n): Q(n)

Rule ? (lemma ”Fact”)

{-1} Exists(n): P(n)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (skolem -1 ”n1”)

{-1} P(n1)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (inst -2 ”n1”)

[-1] P(n1)
{-2} P(n1) ⇒ Q(n1)
` − −
[1] Exists(n:nat): Q(n)

Rule ? (inst 1 ”n1”)
Q.E.D

quantifier rules and introducing lemmas

{-1} A1
` − −
{1} Exists (n:nat): B1(n)
Rule ? (inst 1 (n ”5”))

[-1] A1
` − −
{1} B1(5)

Suppose we have:

Fact: Lemma Exists(n): P(n)

ongoing proof sequent...

{-1} Forall(n): P(n) ⇒ Q(n)
` − −
{1} Exists(n): Q(n)

Rule ? (lemma ”Fact”)

{-1} Exists(n): P(n)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (skolem -1 ”n1”)

{-1} P(n1)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (inst -2 ”n1”)

[-1] P(n1)
{-2} P(n1) ⇒ Q(n1)
` − −
[1] Exists(n:nat): Q(n)

Rule ? (inst 1 ”n1”)
Q.E.D

quantifier rules and introducing lemmas

{-1} A1
` − −
{1} Exists (n:nat): B1(n)
Rule ? (inst 1 (n ”5”))

[-1] A1
` − −
{1} B1(5)

Suppose we have:

Fact: Lemma Exists(n): P(n)

ongoing proof sequent...

{-1} Forall(n): P(n) ⇒ Q(n)
` − −
{1} Exists(n): Q(n)

Rule ? (lemma ”Fact”)

{-1} Exists(n): P(n)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (skolem -1 ”n1”)

{-1} P(n1)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (inst -2 ”n1”)

[-1] P(n1)
{-2} P(n1) ⇒ Q(n1)
` − −
[1] Exists(n:nat): Q(n)

Rule ? (inst 1 ”n1”)
Q.E.D

quantifier rules and introducing lemmas

{-1} A1
` − −
{1} Exists (n:nat): B1(n)
Rule ? (inst 1 (n ”5”))

[-1] A1
` − −
{1} B1(5)

Suppose we have:

Fact: Lemma Exists(n): P(n)

ongoing proof sequent...

{-1} Forall(n): P(n) ⇒ Q(n)
` − −
{1} Exists(n): Q(n)

Rule ? (lemma ”Fact”)

{-1} Exists(n): P(n)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (skolem -1 ”n1”)

{-1} P(n1)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (inst -2 ”n1”)

[-1] P(n1)
{-2} P(n1) ⇒ Q(n1)
` − −
[1] Exists(n:nat): Q(n)

Rule ? (inst 1 ”n1”)
Q.E.D

quantifier rules and introducing lemmas

{-1} A1
` − −
{1} Exists (n:nat): B1(n)
Rule ? (inst 1 (n ”5”))

[-1] A1
` − −
{1} B1(5)

Suppose we have:

Fact: Lemma Exists(n): P(n)

ongoing proof sequent...

{-1} Forall(n): P(n) ⇒ Q(n)
` − −
{1} Exists(n): Q(n)

Rule ? (lemma ”Fact”)

{-1} Exists(n): P(n)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (skolem -1 ”n1”)

{-1} P(n1)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (inst -2 ”n1”)

[-1] P(n1)
{-2} P(n1) ⇒ Q(n1)
` − −
[1] Exists(n:nat): Q(n)

Rule ? (inst 1 ”n1”)
Q.E.D

quantifier rules and introducing lemmas

{-1} A1
` − −
{1} Exists (n:nat): B1(n)
Rule ? (inst 1 (n ”5”))

[-1] A1
` − −
{1} B1(5)

Suppose we have:

Fact: Lemma Exists(n): P(n)

ongoing proof sequent...

{-1} Forall(n): P(n) ⇒ Q(n)
` − −
{1} Exists(n): Q(n)

Rule ? (lemma ”Fact”)

{-1} Exists(n): P(n)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (skolem -1 ”n1”)

{-1} P(n1)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (inst -2 ”n1”)

[-1] P(n1)
{-2} P(n1) ⇒ Q(n1)
` − −
[1] Exists(n:nat): Q(n)

Rule ? (inst 1 ”n1”)
Q.E.D

quantifier rules and introducing lemmas

{-1} A1
` − −
{1} Exists (n:nat): B1(n)
Rule ? (inst 1 (n ”5”))

[-1] A1
` − −
{1} B1(5)

Suppose we have:

Fact: Lemma Exists(n): P(n)

ongoing proof sequent...

{-1} Forall(n): P(n) ⇒ Q(n)
` − −
{1} Exists(n): Q(n)

Rule ? (lemma ”Fact”)

{-1} Exists(n): P(n)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (skolem -1 ”n1”)

{-1} P(n1)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (inst -2 ”n1”)

[-1] P(n1)
{-2} P(n1) ⇒ Q(n1)
` − −
[1] Exists(n:nat): Q(n)

Rule ? (inst 1 ”n1”)
Q.E.D

quantifier rules and introducing lemmas

{-1} A1
` − −
{1} Exists (n:nat): B1(n)
Rule ? (inst 1 (n ”5”))

[-1] A1
` − −
{1} B1(5)

Suppose we have:

Fact: Lemma Exists(n): P(n)

ongoing proof sequent...

{-1} Forall(n): P(n) ⇒ Q(n)
` − −
{1} Exists(n): Q(n)

Rule ? (lemma ”Fact”)

{-1} Exists(n): P(n)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (skolem -1 ”n1”)

{-1} P(n1)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (inst -2 ”n1”)

[-1] P(n1)
{-2} P(n1) ⇒ Q(n1)
` − −
[1] Exists(n:nat): Q(n)

Rule ? (inst 1 ”n1”)
Q.E.D

quantifier rules and introducing lemmas

{-1} A1
` − −
{1} Exists (n:nat): B1(n)
Rule ? (inst 1 (n ”5”))

[-1] A1
` − −
{1} B1(5)

Suppose we have:

Fact: Lemma Exists(n): P(n)

ongoing proof sequent...

{-1} Forall(n): P(n) ⇒ Q(n)
` − −
{1} Exists(n): Q(n)

Rule ? (lemma ”Fact”)

{-1} Exists(n): P(n)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (skolem -1 ”n1”)

{-1} P(n1)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (inst -2 ”n1”)

[-1] P(n1)
{-2} P(n1) ⇒ Q(n1)
` − −
[1] Exists(n:nat): Q(n)

Rule ? (inst 1 ”n1”)
Q.E.D

quantifier rules and introducing lemmas

{-1} A1
` − −
{1} Exists (n:nat): B1(n)
Rule ? (inst 1 (n ”5”))

[-1] A1
` − −
{1} B1(5)

Suppose we have:

Fact: Lemma Exists(n): P(n)

ongoing proof sequent...

{-1} Forall(n): P(n) ⇒ Q(n)
` − −
{1} Exists(n): Q(n)

Rule ? (lemma ”Fact”)

{-1} Exists(n): P(n)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (skolem -1 ”n1”)

{-1} P(n1)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (inst -2 ”n1”)

[-1] P(n1)
{-2} P(n1) ⇒ Q(n1)
` − −
[1] Exists(n:nat): Q(n)

Rule ? (inst 1 ”n1”)
Q.E.D

quantifier rules and introducing lemmas

{-1} A1
` − −
{1} Exists (n:nat): B1(n)
Rule ? (inst 1 (n ”5”))

[-1] A1
` − −
{1} B1(5)

Suppose we have:

Fact: Lemma Exists(n): P(n)

ongoing proof sequent...

{-1} Forall(n): P(n) ⇒ Q(n)
` − −
{1} Exists(n): Q(n)

Rule ? (lemma ”Fact”)

{-1} Exists(n): P(n)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (skolem -1 ”n1”)

{-1} P(n1)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (inst -2 ”n1”)

[-1] P(n1)
{-2} P(n1) ⇒ Q(n1)
` − −
[1] Exists(n:nat): Q(n)

Rule ? (inst 1 ”n1”)
Q.E.D

quantifier rules and introducing lemmas

{-1} A1
` − −
{1} Exists (n:nat): B1(n)
Rule ? (inst 1 (n ”5”))

[-1] A1
` − −
{1} B1(5)

Suppose we have:

Fact: Lemma Exists(n): P(n)

ongoing proof sequent...

{-1} Forall(n): P(n) ⇒ Q(n)
` − −
{1} Exists(n): Q(n)

Rule ? (lemma ”Fact”)

{-1} Exists(n): P(n)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (skolem -1 ”n1”)

{-1} P(n1)
[-2] Forall(n): P(n) ⇒ Q(n)
` − −
[1] Exists(n): Q(n)

Rule ? (inst -2 ”n1”)

[-1] P(n1)
{-2} P(n1) ⇒ Q(n1)
` − −
[1] Exists(n:nat): Q(n)

Rule ? (inst 1 ”n1”)
Q.E.D

control rules

1. (undo k) undoes proof back
to k th level ancestor

2. (postpone) mark current goal
as pending and move focus
to next unproved goal in
proof tree

3. (quit) terminate current
proof attempt

main goal

cmd1

goal

cmd2

goal.1

cmd3

�

goal.2

cmd4

goal2.1 goal2.2

control rules

1. (undo k) undoes proof back
to k th level ancestor

2. (postpone) mark current goal
as pending and move focus
to next unproved goal in
proof tree

3. (quit) terminate current
proof attempt

main goal

cmd1

goal

cmd2

goal.1

cmd3

�

goal.2

cmd4

goal2.1 goal2.2

more prover commands

I (expand ”foo”): expands the definition of ”foo” in the sequent

I (induct ”n”): for a universally quantified formula over natural numbers
this invokes the standard induction schema

I (induct ”x”): does the same for any well-founded set with an
associated induction schema

I (apply-extensionality): deduce f = g from f (a) = g(a), f (b) = g(b), for
f , g : {a, b} → T

I (assert): simplify

I (grind): lift-if, rewrite, and repeatedly simplify

more prover commands

I (expand ”foo”): expands the definition of ”foo” in the sequent

I (induct ”n”): for a universally quantified formula over natural numbers
this invokes the standard induction schema

I (induct ”x”): does the same for any well-founded set with an
associated induction schema

I (apply-extensionality): deduce f = g from f (a) = g(a), f (b) = g(b), for
f , g : {a, b} → T

I (assert): simplify

I (grind): lift-if, rewrite, and repeatedly simplify

more prover commands

I (expand ”foo”): expands the definition of ”foo” in the sequent

I (induct ”n”): for a universally quantified formula over natural numbers
this invokes the standard induction schema

I (induct ”x”): does the same for any well-founded set with an
associated induction schema

I (apply-extensionality): deduce f = g from f (a) = g(a), f (b) = g(b), for
f , g : {a, b} → T

I (assert): simplify

I (grind): lift-if, rewrite, and repeatedly simplify

more prover commands

I (expand ”foo”): expands the definition of ”foo” in the sequent

I (induct ”n”): for a universally quantified formula over natural numbers
this invokes the standard induction schema

I (induct ”x”): does the same for any well-founded set with an
associated induction schema

I (apply-extensionality): deduce f = g from f (a) = g(a), f (b) = g(b), for
f , g : {a, b} → T

I (assert): simplify

I (grind): lift-if, rewrite, and repeatedly simplify

more prover commands

I (expand ”foo”): expands the definition of ”foo” in the sequent

I (induct ”n”): for a universally quantified formula over natural numbers
this invokes the standard induction schema

I (induct ”x”): does the same for any well-founded set with an
associated induction schema

I (apply-extensionality): deduce f = g from f (a) = g(a), f (b) = g(b), for
f , g : {a, b} → T

I (assert): simplify

I (grind): lift-if, rewrite, and repeatedly simplify

more prover commands

I (expand ”foo”): expands the definition of ”foo” in the sequent

I (induct ”n”): for a universally quantified formula over natural numbers
this invokes the standard induction schema

I (induct ”x”): does the same for any well-founded set with an
associated induction schema

I (apply-extensionality): deduce f = g from f (a) = g(a), f (b) = g(b), for
f , g : {a, b} → T

I (assert): simplify

I (grind): lift-if, rewrite, and repeatedly simplify

polymorphic theory of automata

simplemachine[
states, actions: type,
enabled: [actions,states -> bool],
trans: [actions,states -> states],
start: [states -> bool]
]: theory

reachable hidden(s,n): recursive bool =
if n = 0 then start(s)
else (exists a, s1 : reachable hidden(s1,n -1) and
enabled(a,s1) and s = trans(a,s1))
endif

measure (lambda s,n: n)

reachable(s): bool = exists n : reachable hidden(s,n)

polymorphic theory of automata

simplemachine[
states, actions: type,
enabled: [actions,states -> bool],
trans: [actions,states -> states],
start: [states -> bool]
]: theory

reachable hidden(s,n): recursive bool =
if n = 0 then start(s)
else (exists a, s1 : reachable hidden(s1,n -1) and
enabled(a,s1) and s = trans(a,s1))
endif

measure (lambda s,n: n)

reachable(s): bool = exists n : reachable hidden(s,n)

polymorphic theory of automata

Inv: var [states-> bool]

base(Inv) : bool = forall s: start(s) implies Inv(s)

inductstep(Inv) : bool = forall s, a: reachable(s) and Inv(s) and
enabled(a,s) implies Inv(trans(a,s))

inductthm(Inv): bool = base(Inv) and inductstep(Inv)
implies (forall s : reachable(s) implies Inv(s))

polymorphic theory of automata

Inv: var [states-> bool]

base(Inv) : bool = forall s: start(s) implies Inv(s)

inductstep(Inv) : bool = forall s, a: reachable(s) and Inv(s) and
enabled(a,s) implies Inv(trans(a,s))

inductthm(Inv): bool = base(Inv) and inductstep(Inv)
implies (forall s : reachable(s) implies Inv(s))

a distributed algorithm for spreading the min value

states: type = [# val: array[I-> nat] #]

val(i:I, s:states):nat = s‘val(i)

s0: states

Start ax: Axiom Forall(i:I): val(i,s0) > = val(0,s0)

start(s: states): bool = s = s0

actions: datatype begin
check(i,j:I): check?
end actions

a distributed algorithm for spreading the min value

enabled(a:actions, s:states):bool =
cases a of
check(i,j): true

trans(a, s):states =
cases a of
check(i,j): s with [val := val(s) with [(i) := min(val(i,s),val(j,s))]]

a distributed algorithm for spreading the min value

count(s): number of agents with value greater than min at state s

following properties capture correctness

1. agent 0 always has the minimum value

2. in every step the count does not increase

3. if count is not 0 then there exists a step for which count decreases

proving correctness of min-spreading algorithm

count(s): number of agents with value greater than min at state s

1. agent 0 always has the minimum value

2. in every step the count does not increase

3. if count is not 0 then there exists a step for which count decreases

MinConst Inv(s):bool = Forall(i:I): val(0,s) ⇐ val(i,s)
MinConst: Lemma Forall (s:states): reachable(s) Implies MinConst Inv(s)

Non Increasing: Lemma Forall (s:states,a:actions):
enabled(a,s) Implies count(s) > = count(trans(a,s))

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions): count(s) > count(trans(a,s))

proving correctness of min-spreading algorithm

count(s): number of agents with value greater than min at state s

1. agent 0 always has the minimum value

2. in every step the count does not increase

3. if count is not 0 then there exists a step for which count decreases

MinConst Inv(s):bool = Forall(i:I): val(0,s) ⇐ val(i,s)
MinConst: Lemma Forall (s:states): reachable(s) Implies MinConst Inv(s)

Non Increasing: Lemma Forall (s:states,a:actions):
enabled(a,s) Implies count(s) > = count(trans(a,s))

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions): count(s) > count(trans(a,s))

proving correctness of min-spreading algorithm

count(s): number of agents with value greater than min at state s

1. agent 0 always has the minimum value

2. in every step the count does not increase

3. if count is not 0 then there exists a step for which count decreases

MinConst Inv(s):bool = Forall(i:I): val(0,s) ⇐ val(i,s)
MinConst: Lemma Forall (s:states): reachable(s) Implies MinConst Inv(s)

Non Increasing: Lemma Forall (s:states,a:actions):
enabled(a,s) Implies count(s) > = count(trans(a,s))

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions): count(s) > count(trans(a,s))

proving correctness of min-spreading algorithm

count(s): number of agents with value greater than min at state s

1. agent 0 always has the minimum value

2. in every step the count does not increase

3. if count is not 0 then there exists a step for which count decreases

MinConst Inv(s):bool = Forall(i:I): val(0,s) ⇐ val(i,s)
MinConst: Lemma Forall (s:states): reachable(s) Implies MinConst Inv(s)

Non Increasing: Lemma Forall (s:states,a:actions):
enabled(a,s) Implies count(s) > = count(trans(a,s))

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions): count(s) > count(trans(a,s))

proving correctness of min-spreading algorithm

count(s): number of agents with value greater than min at state s

1. agent 0 always has the minimum value

2. in every step the count does not increase

3. if count is not 0 then there exists a step for which count decreases

MinConst Inv(s):bool = Forall(i:I): val(0,s) ⇐ val(i,s)
MinConst: Lemma Forall (s:states): reachable(s) Implies MinConst Inv(s)

Non Increasing: Lemma Forall (s:states,a:actions):
enabled(a,s) Implies count(s) > = count(trans(a,s))

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions): count(s) > count(trans(a,s))

proving correctness of min-spreading algorithm

MinConst Inv(s):bool = Forall(i:I): val(0,s) ⇐ val(i,s)

MinConst: Lemma Forall (s:states): reachable(s) Implies MinConst Inv(s)

PVS proof ...

proving correctness of min-spreading algorithm

MinConst Inv(s):bool = Forall(i:I): val(0,s) ⇐ val(i,s)

MinConst: Lemma Forall (s:states): reachable(s) Implies MinConst Inv(s)

PVS proof ...

the proof

("" (lemma "machine_induct")

(inst -1 "MinConst_Inv")

(expand "inductthm")

(skolem!)

(split)

(("1" (expand "base") (skolem!)

(expand "MinConst_Inv")

(expand "start")

(lemma "Start_ax")

(skolem!)

(inst -1 "i!1")

(assert))

("2" (expand "inductstep") (skolem * ("s1" "a"))

(case "check?(a)")

(("1" (expand "MinConst_Inv")

(skolem * ("j1"))

(copy -3)

(expand "val" 1)

(case "i(a) = j1")

(("1" (inst -2 "i(a)") (inst -5 "j(a)") (grind)) ("2" (inst -1 "j1") (grind))))

("2" (assert))))))

the proof

("" (lemma "machine_induct")

(inst -1 "MinConst_Inv")

(expand "inductthm")

(skolem!)

(split)

(("1" (expand "base") (skolem!)

(expand "MinConst_Inv")

(expand "start")

(lemma "Start_ax")

(skolem!)

(inst -1 "i!1")

(assert))

("2" (expand "inductstep") (skolem * ("s1" "a"))

(case "check?(a)")

(("1" (expand "MinConst_Inv")

(skolem * ("j1"))

(copy -3)

(expand "val" 1)

(case "i(a) = j1")

(("1" (inst -2 "i(a)") (inst -5 "j(a)") (grind)) ("2" (inst -1 "j1") (grind))))

("2" (assert))))))

proving correctness of min-spreading algorithm

count(s): number of agents with value greater than min at state s

MinConst Inv(s):bool = Forall(i:I): val(0,s) ⇐ val(i,s)
MinConst: Lemma Forall (s:states): reachable(s) Implies MinConst Inv(s)

Non Increasing: Lemma Forall (s:states,a:actions):
enabled(a,s) Implies count(s) > = count(trans(a,s))

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions): count(s) > count(trans(a,s))

proving correctness of min-spreading algorithm

count rec(i:I, s:states) :recursive nat =
if i = 0 then 0
elsif val(i,s) > val(0,s) then 1 + count rec(i-1, s)
else count rec(i-1, s)
endif
measure (lambda(i:I, s:states): i)

count(s:states): nat = count rec(N,s)

proving correctness of min spreading algorithm

count rec(i,s): number of agents with value greater than min at state s

among the first i agents

Non Increasing: Lemma Forall (s:states,a:actions):
enabled(a,s) Implies count(s) > = count(trans(a,s))

stronger version of Non Increasing lemma

Non Increasing1: Lemma Forall (s:states,a:actions): enabled(a,s) Implies
Forall (i:I): count rec(i,s) > = count rec(i,trans(a,s))

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions): count(s) > count(trans(a,s))

stronger version of Decreasing lemma?

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions):Forall (i:I): count rec(i,s) > count rec(i,trans(a,s))

proving correctness of min spreading algorithm

count rec(i,s): number of agents with value greater than min at state s

among the first i agents

Non Increasing: Lemma Forall (s:states,a:actions):
enabled(a,s) Implies count(s) > = count(trans(a,s))

stronger version of Non Increasing lemma

Non Increasing1: Lemma Forall (s:states,a:actions): enabled(a,s) Implies
Forall (i:I): count rec(i,s) > = count rec(i,trans(a,s))

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions): count(s) > count(trans(a,s))

stronger version of Decreasing lemma?

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions):Forall (i:I): count rec(i,s) > count rec(i,trans(a,s))

proving correctness of min spreading algorithm

count rec(i,s): number of agents with value greater than min at state s

among the first i agents

Non Increasing: Lemma Forall (s:states,a:actions):
enabled(a,s) Implies count(s) > = count(trans(a,s))

stronger version of Non Increasing lemma

Non Increasing1: Lemma Forall (s:states,a:actions): enabled(a,s) Implies
Forall (i:I): count rec(i,s) > = count rec(i,trans(a,s))

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions): count(s) > count(trans(a,s))

stronger version of Decreasing lemma?

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions):Forall (i:I): count rec(i,s) > count rec(i,trans(a,s))

proving correctness of min spreading algorithm

count rec(i,s): number of agents with value greater than min at state s

among the first i agents

Non Increasing: Lemma Forall (s:states,a:actions):
enabled(a,s) Implies count(s) > = count(trans(a,s))

stronger version of Non Increasing lemma

Non Increasing1: Lemma Forall (s:states,a:actions): enabled(a,s) Implies
Forall (i:I): count rec(i,s) > = count rec(i,trans(a,s))

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions): count(s) > count(trans(a,s))

stronger version of Decreasing lemma?

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions):Forall (i:I): count rec(i,s) > count rec(i,trans(a,s))

proving correctness of min spreading algorithm

count rec(i,s): number of agents with value greater than min at state s

among the first i agents

Non Increasing: Lemma Forall (s:states,a:actions):
enabled(a,s) Implies count(s) > = count(trans(a,s))

stronger version of Non Increasing lemma

Non Increasing1: Lemma Forall (s:states,a:actions): enabled(a,s) Implies
Forall (i:I): count rec(i,s) > = count rec(i,trans(a,s))

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions): count(s) > count(trans(a,s))

stronger version of Decreasing lemma?

Decreasing: Lemma Forall (s:states): count(s) /= 0 Implies
Exists (a:actions):Forall (j:I):
IF j < i(a) THEN count rec(j,s) = count rec(j, trans(a,s))
ELSE count rec(j,s) = 1 + count rec(j, trans(a,s)) ENDIF

summary

I PVS specification language: very expressive—high order, type
constructors, abstract datatypes

I defining types carefully can help us avoid some annoying TCCs and
extra proof obligations

I most prover commands roughly correspond to proof steps that you
would write in a detailed hand proof; exception: manipulation of
arithmetic formulas

I heavy weight decision procedures perform acceptably for low-level
simplifications but cannot (in general) replace important proof steps

I research direction: for specific application domains such as
distributed systems, construct strategies that generate sequences of
proof commands from the specification

summary

I PVS specification language: very expressive—high order, type
constructors, abstract datatypes

I defining types carefully can help us avoid some annoying TCCs and
extra proof obligations

I most prover commands roughly correspond to proof steps that you
would write in a detailed hand proof; exception: manipulation of
arithmetic formulas

I heavy weight decision procedures perform acceptably for low-level
simplifications but cannot (in general) replace important proof steps

I research direction: for specific application domains such as
distributed systems, construct strategies that generate sequences of
proof commands from the specification

summary

I PVS specification language: very expressive—high order, type
constructors, abstract datatypes

I defining types carefully can help us avoid some annoying TCCs and
extra proof obligations

I most prover commands roughly correspond to proof steps that you
would write in a detailed hand proof; exception: manipulation of
arithmetic formulas

I heavy weight decision procedures perform acceptably for low-level
simplifications but cannot (in general) replace important proof steps

I research direction: for specific application domains such as
distributed systems, construct strategies that generate sequences of
proof commands from the specification

summary

I PVS specification language: very expressive—high order, type
constructors, abstract datatypes

I defining types carefully can help us avoid some annoying TCCs and
extra proof obligations

I most prover commands roughly correspond to proof steps that you
would write in a detailed hand proof; exception: manipulation of
arithmetic formulas

I heavy weight decision procedures perform acceptably for low-level
simplifications but cannot (in general) replace important proof steps

I research direction: for specific application domains such as
distributed systems, construct strategies that generate sequences of
proof commands from the specification

summary

I PVS specification language: very expressive—high order, type
constructors, abstract datatypes

I defining types carefully can help us avoid some annoying TCCs and
extra proof obligations

I most prover commands roughly correspond to proof steps that you
would write in a detailed hand proof; exception: manipulation of
arithmetic formulas

I heavy weight decision procedures perform acceptably for low-level
simplifications but cannot (in general) replace important proof steps

I research direction: for specific application domains such as
distributed systems, construct strategies that generate sequences of
proof commands from the specification

references

1. PVS system guide http://pvs.csl.sri.com/doc/pvs-system-guide.pdf
Read chapter 2 for basic instructions about the user interface

2. PVS language http://pvs.csl.sri.com/doc/pvs-language-reference.pdf

3. PVS prover guide http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

http://pvs.csl.sri.com/doc/pvs-system-guide.pdf
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

	introduction
	PVS specification language
	summary
	Proof techniques and generating PVS theories
	Proof techniques and generating PVS theories
	Proof techniques and generating PVS theories
	Proof techniques and generating PVS theories
	Proof techniques and generating PVS theories

