ECE/CS 584: Verification of Embedded Computing Systems

Lecture 02 Sayan Mitra

Propositional Logic Summary

- Syntax (rules for constructing well formed sentences)
 - Countable set of (atomic) propositions PS: P1, P2, P3, ...
 - $S = True | p_1 | \neg S_1 | S_1 \land S_2 | (S_1)$
- Semantics defines a truth value functions or valuations v that maps each proposition PS to a truth value (T or F), v: PS→ {T, F} and by extension a valuation v':PROPS→{T,F}
- A proposition A is valid v'(A) = T for all valuations v. A is also called a tautology
- A proposition is satisfiable if there is a valuation (or truth assignment) v such that v(A) = T.
- Checking (un)satisfiability is called **boolean satisfiability problem** (SAT).
- SAT is (decidable) **NP-complete** problem

Predicate Logic or First Order Logic

- Syntax defined by a signature of **predicate** & **function** symbols
 - Variables
 - Predicate symbols with some valence or arity
 - a is predicate of 0-arity, like propositions
 - P(x) is a predicate of 1-arity
 - Q(x,y) is a predicate of 2-arity
 - Function symbols of some valence,
 - Function symbols of 0 arity are called constants
 - f(x) is a function of arity 1, e.g., -x
 - A term t ::= x | f(t1,t2,t3,...), where t1, t2, t3, ... are terms
 - A formula φ ::= a | P(x) | Q(x,y) | t1 = t2 | $\neg \varphi$ | ($\varphi 1 \Rightarrow \varphi 2$) | ... | ... | $\forall x \varphi$ | $\exists x \varphi$
- Example of Well Formed Formula

 $- \exists x P(x), \forall x \forall y (E(x, y) \Rightarrow E(y, x)), \forall x y Q(x, f(y)) \equiv Q(f(y), x)$

Bounded and unbounded variables, closed formulas

Semantics

- An interpretation or a model M of a FOL formula assigns meaning to all the non-logical symbols and a domain for the variables (i.e., the variables, the predicate symbols, and the function symbols)
 - D: Domain of discourse
 - For each variable x, a valuation v(x) gives a value in D
 - Each function symbol f of arity n is assigned a function $D^n \rightarrow D$
 - Each predicate symbol P of atity n is assigned a predicate $D^n \rightarrow \{T, F\}$
- If formula φ evaluates to T with model M, then we say M satisfies φ , M $\vDash \varphi$ and φ is said to be satisfiable
- φ is valid if it is true for every interpretation

Example (Un)Decidable Classes

Prefix	# of n-ary predicate symbols	# of n-ary function symbols	With Equalit y	Name
AAA	ω, 1	0	N	Kahr 1962
∀ ³ ∃	ω, 1	0	N	Suranyi 1959
₹¥	0,1	0	N	Kalmar-Suranyi 1950
*EAEA	0,1	0	N	Gurevich 1966
V	0	2	Y	Gurevich 1976
V	0	0, 1	Y	Gurevich 1976
∀ ² ∃	ω, 1	0	Y	Goldfarb 1984
∃*A*	all	0	Y	Ramsey 1930
*EA*E	all	all	N	Maslov-Orevkov 1972
Э*	all	all	Y	Gurevich 1976
all	ω	ω	N	Lob 1967

Decidable

Theory of Time Input/Output Automata

Lecture 02 Sayan Mitra

Roadmap

- Syntax
- Semantics
- Abstraction, Implementation
- Simulations
- Composition
- Substitutivity

Variables and Valuations

- A variable *x* is a name for a state component
- type(x)
- A set of variables X
- A valuation for X maps each x ∈ X to an element in type(x)
- val(X): set of all valuations of X

- x:R
- color:{R,G,B}
- clock: $\mathbb{R}^{\geq 0}$
- X = {x,color,clock}
- $\mathbf{x} = \langle \mathbf{x} \rightarrow 5.5, \text{ color } \rightarrow \mathbf{G},$ clock $\rightarrow 12 \rangle$
- $y = \langle x \rightarrow 7.90, \text{ color} \rightarrow G, \text{ clock} \rightarrow 1 \rangle$
- **x.**color = G, **x.**x = 5.5, **y.**x = 7.90

Trajectories

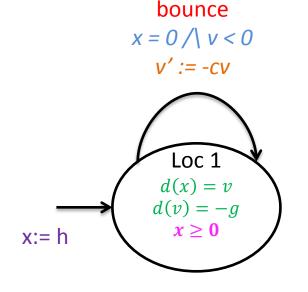
- Time = $\mathbb{R}^{\geq 0}$
- Time interval = [a,b]
- A trajectory for X is a function $\tau: [0, t] \rightarrow val(X)$, where [0,t] is an interval
- τ . dom = [0, t]
- x is continuous (or analog) if all its trajectories are piecewise continuous
- Discrete if they are piecewise constant
- Notations: τ .fstate, τ .lstate, τ .x, τ .X
- Prefix, suffix, concatenation

Hybrid Automata (a.k.a Timed Automata Kaynar, et al. 2005)

 $\mathcal{A}=(X,Q,\Theta,E,H,\mathcal{D},\mathcal{T})$

- X: set of internal variables
- $Q \subseteq val(X)$ set of states
- $\Theta \subseteq Q$ set of start states
- *E,H* sets of internal and external actions, A= E ∪ H
- $\mathcal{D} \subseteq Q \times A \times Q$
- *T*: set of trajectories for X which is closed under prefix, suffix, and concatenation

Bouncing Ball



Automaton Bouncingball(c,h,g) variables: analog x: Reals := h, v: Reals := 0 states: True actions: external bounce transitions: bounce pre x = 0 / v < 0

eff v := -cv

trajectories:

evolve d(x) = v; d(v) = -ginvariant $x \ge 0$

Graphical Representation used in many articles

TIOA Specification Language (close to PHAVer & UPPAAL's language)

Trajectory Semantics