
ECE/CS 584: Verification of
Embedded Computing Systems

Lecture 02

Sayan Mitra

Propositional Logic Summary

• Syntax (rules for constructing well formed sentences)

– Countable set of (atomic) propositions PS: P1, P2, P3, …

– S = True | 𝑝1 ¬𝑆1 𝑆1⋀ 𝑆2 | (S1)

• Semantics defines a truth value functions or valuations v that maps each
proposition PS to a truth value (T or F), v: PS {T, F} and by extension a
valuation v’:PROPS{T,F}

• A proposition A is valid v’(A) = T for all valuations v. A is also called a tautology

• A proposition is satisfiable if there is a valuation (or truth assignment) v such
that v(A) = T.

• Checking (un)satisfiability is called boolean satisfiability problem (SAT).

• SAT is (decidable) NP-complete problem

Predicate Logic or First Order Logic
• Syntax defined by a signature of predicate & function symbols

– Variables
– Predicate symbols with some valence or arity

• a is predicate of 0-arity, like propositions
• P(x) is a predicate of 1-arity
• Q(x,y) is a predicate of 2-arity

– Function symbols of some valence,
• Function symbols of 0 arity are called constants
• f(x) is a function of arity 1, e.g., -x

– A term t ::= x | f(t1,t2,t3,…), where t1, t2, t3, … are terms
– A formula 𝜑 ::= a | P(x) | Q(x,y) | t1 = t2 |¬𝜑 | (𝜑1 ⇒ 𝜑2) | … | …

| ∀𝑥𝜑 | ∃𝑥𝜑

• Example of Well Formed Formula
– ∃𝑥 𝑃 𝑥 , ∀x∀y(E(x, y) ⇒ E(y, x)), ∀𝑥 𝑦 𝑄 𝑥, 𝑓 𝑦 ≡ 𝑄(𝑓(𝑦), 𝑥)

• Bounded and unbounded variables, closed formulas

Semantics

• An interpretation or a model M of a FOL formula assigns
meaning to all the non-logical symbols and a domain for
the variables (i.e., the variables, the predicate symbols,
and the function symbols)
– D: Domain of discourse
– For each variable x, a valuation v(x) gives a value in D
– Each function symbol f of arity n is assigned a function Dn D
– Each predicate symbol P of atity n is assigned a predicate Dn
 {T, F}

• If formula 𝜑 evaluates to T with model M, then we say M
satisfies 𝜑, M ⊨ 𝜑and 𝜑 is said to be satisfiable

• 𝜑 is valid if it is true for every interpretation

Example (Un)Decidable Classes

Prefix # of n-ary
predicate
symbols

of n-ary
function
symbols

With
Equalit

y

Name

∀∃∀ ω, 1 0 N Kahr 1962

∀3∃ ω, 1 0 N Suranyi 1959

∀*∃ 0,1 0 N Kalmar-Suranyi 1950

∀∃∀∃* 0,1 0 N Gurevich 1966

∀ 0 2 Y Gurevich 1976

∀ 0 0, 1 Y Gurevich 1976

∀2∃ ω, 1 0 Y Goldfarb 1984

∃*∀* all 0 Y Ramsey 1930

∃*∀∃* all all N Maslov-Orevkov 1972

∃* all all Y Gurevich 1976

all ω ω N Lob 1967

U
n

d
ec

id
ab

le

D
ec

id
ab

le

Theory of Time Input/Output
Automata

Lecture 02

Sayan Mitra

Roadmap

• Syntax

• Semantics

• Abstraction, Implementation

• Simulations

• Composition

• Substitutivity

Variables and Valuations

• A variable x is a name
for a state component

• type(x)

• A set of variables X

• A valuation for X maps
each x ∈ 𝑋 to an
element in type(x)

• 𝑣𝑎𝑙(𝑋): set of all
valuations of X

• x:ℝ

• color:{R,G,B}

• clock:ℝ ≥0

• X = {x,color,clock}

• x = <x 5.5, color G,
clock 12>

• y = <x 7.90, color
G, clock 1>

• x.color = G, x.x = 5.5, y.x
= 7.90

Trajectories

• Time = ℝ ≥0
• Time interval = [a,b]
• A trajectory for X is a function

𝜏: 0, 𝑡 → 𝑣𝑎𝑙 𝑋 , where [0,t]
is an interval

• 𝜏. 𝑑𝑜𝑚 = [0, 𝑡]
• x is continuous (or analog) if all

its trajectories are piecewise
continuous

• Discrete if they are piecewise
constant

• Notations: 𝜏.fstate, 𝜏.lstate, 𝜏.x,
𝜏.X

• Prefix, suffix, concatenation

Hybrid Automata (a.k.a Timed
Automata Kaynar, et al. 2005)

𝓐= 𝑋, 𝑄, Θ, 𝐸, 𝐻, 𝒟, 𝒯
• 𝑋: set of internal

variables
• 𝑄 ⊆ 𝑣𝑎𝑙(𝑋) set of states
• Θ ⊆ 𝑄 set of start states
• E,H sets of internal and

external actions, A= E ∪ H

• 𝒟 ⊆ 𝑄 × 𝐴 × 𝑄
• 𝒯: set of trajectories for X

which is closed under
prefix, suffix, and
concatenation

Bouncing Ball

Automaton Bouncingball(c,h,g)

 variables: analog x: Reals := h, v: Reals := 0

 states: True

 actions: external bounce

 transitions:

 bounce

 pre x = 0 /\ v < 0

 eff v := -cv

 trajectories:

 evolve d(x) = v; d(v) = -g

 invariant 𝒙 ≥ 𝟎

Loc 1

𝑑 𝑥 = 𝑣
𝑑 𝑣 = −𝑔

𝒙 ≥ 𝟎

TIOA Specification Language
(close to PHAVer & UPPAAL’s language)

Graphical Representation used in
many articles

bounce
x = 0 /\ v < 0

v’ := -cv

x:= h

Trajectory Semantics

