Introduction to Abstract Interpretation

ECE 584 Sayan Mitra Lecture 18

References

- Patrick Cousot, <u>Radhia Cousot</u>: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. <u>POPL 1977</u>: 238-252
- 16.399: Abstract Interpretation at MIT http://web.mit.edu/afs/athena.mit.edu/ course/16/16.399/www/
- Notes on Abstract Interpretation by Alexandru Salcianu, Nov 2001
- ASTREE tools: <u>http://www.astree.ens.fr/</u>

Abstract interpretation in a nut shell (Coușot)

Concrete Executions/Semantics, usually all answering nontrivial questions is undecidable

Abstract interpretation

Outline

• Background

Lattices and Galois connections

- Property lattice
- Basic and refined analysis
- Fixed point computations
 - Widening

Abstract Interpretation in more detail

- Abstract interpretation is a technique for approximating a <u>basic analysis</u> with a refined analysis that sacrifices precision for speed
- Abstract interpretation (AI) relates basic analysis and refined analysis using a Galois Connection between property lattices
- The basic analysis may be too hard to compute, but hopefully successive refinements give an analysis that is computable
- Widening/narrowing for terminating fixed point computations

A thing or two about lattices

- Concrete System $\langle Q, Q_0, D \rangle, D \subseteq Q \times Q$
- Execution q_0, q_1, q_2, \dots
- A property space L is a complete lattice ⟨L, ⊑⟩
 - A poset $\langle L, \sqsubseteq \rangle$ is a complete lattice if every subset $A \subseteq L$ has both a greatest lower bound (inf, glb, meet, $\bigwedge A, \sqcap A$) and a least upper bound (sup, lub, join, $\lor A, \sqcup A$)
- A lattice has ascending chain property if there is no infinite ascending chain

http://code.google.com/p/python-lattice/

L = Val({x,3,2}) M = Val({x,3}) Galois Connections

• $\langle L, \alpha, \gamma, M \rangle$ is a Galois conneciton between the lattice $\langle L, \sqsubseteq_L \rangle$ and $\langle M, \sqsubseteq_M \rangle$ iff $M \rightarrow L$ $-\alpha: L \rightarrow M, \gamma: L \rightarrow M$

Abstraction and concretization

 $-\alpha, \gamma$ are monotonic

$$- \alpha \circ \gamma \sqsubseteq_M \lambda m. m$$

Concretization does not lose
precision

$$\begin{array}{c} \bullet & -\gamma \circ \alpha \supseteq_{l} \lambda l.l \\ \text{Abstraction may lose precision} \\ \text{but remains correct} \\ \neq l \quad \forall \circ d (l) \end{array}$$

Property Lattice

- For $l_1, l_2 \in L$ with $l_1 \sqsubseteq l_2$ think of l_1 being **no weaker than** l_2
- A relation $R \subseteq Q \times L$ is a **correctness relation** iff
 - $\forall v, l_1, l_2, (v \ R \ l_1) \land (l_1 \sqsubseteq l_2) \to (v \bowtie l_2)$
 - l_1 approximates ${\it v}$ and there is an "upper" approximation l_2 means l_2 approximates ${\it v}$
 - $\forall v, \forall L' \subseteq L, (\forall l \in L', (v \ R \ l)) \rightarrow v \ R \ (\land L')$
 - If v is approximated by several properties in L' we take the smallest (most precise) of them
- In property lattice smaller means more precise, the top element T is the least precise and approximates all the other properties
- Lemma. $R \subseteq Q \times L$ is correctness relation, then
 - -(v R T)
 - $(v R l) \land (v R l) \rightarrow v R (l_1 \sqcap l_2)$
- v satisfies both l_1 AND l_2 then we obtain more precise $l_1 \sqcap l_2$
- v satisfies l_1 OR l_2 then we obtain weaker $l_1 \sqcup l_2$

Example 1

- Invariant properties of A
 - $-\operatorname{Reach}_{A} \subseteq S2 \cap S1$
 - S1 is an invariant (Reach_A \subseteq S1)
 - S2 is an invariant (Reach_A \subseteq S2)
 - $-\operatorname{Reach}_{A} \subseteq S2 \cup S1$
- If Q is finite then the lattice has ascending chain property

Example 2

- Global exponential Stability
 - $|\mathbf{x}(t)| \le \min(c_1, c_2) e^{-\max(\lambda_1, \lambda_2)} |\mathbf{x}(0)|$
 - $|\mathbf{x}(\mathbf{t})| \le c_1 e^{-\lambda_1} |\mathbf{x}(\mathbf{0})| \bigstar$
 - $|\mathbf{x}(t)| \le c_2 e^{-\lambda_2} |x(0)|$
 - $|\mathbf{x}(t)| \le \max(c_1, c_2) e^{-\min(\lambda_1, \lambda_2)} |\mathbf{x}(0)|$
- If c and λ come from set of bounded integers [M] then this property lattice has ascending chain property

Basic Analysis

- Given an execution $q_0, q_1, q_2, \dots, q_k$ of the concrete system and a property lattice $\langle L, \sqsubseteq \rangle$ and a property relation R, how to compute the property satisfied by q_k ?
- Suppose we have an abstract initial value $l_0 \in L$ such that $q_0 R l_0$
- Consider each concrete execution path p from q_0 that reachs q_k ?
 - Follow the corresponding abstract path from l_0 to arrive at the abstract state $l_{k,p}$
 - Join the $l'_{k,p}$
- Correctness conditions
 - $v_0 R l_0$
 - $\begin{array}{ll} & \forall v_1, v_2, l_1 l_2, (v_1 \rightarrow v_2) \land (v_1 R \ l_1) \land (f_L(l_1) = l_2) \rightarrow \\ & v_2 R \ l_2 \end{array}$
- Usually this join over paths cannot be computed, therefore, approximate

Refining the Analysis

- For invariance, we want to compute a fixpoint of the f_L
- Usually the fixed point computation is too difficult or impossible
 - Analysis converges too slowly
 - L does not have ascending chain property
- Use a smaller, more approximate property lattice M such that there is a Galois connection (L, α, γ, M)

More facts about Galois Connections

- If $\langle L, \alpha, \gamma, M \rangle$ is a Galois Connection then α uniquely determines γ
 - $-\gamma(m) = \sqcup \{ l \mid \alpha(l) \sqsubseteq m \}^{\checkmark}$
- γ uniquely determines α

 $- \alpha(l) = \sqcap \{ m \mid \gamma(m) \sqsubseteq l \}$

- If α is completely additive $\forall L' \subseteq L, \alpha(\sqcup L') = \sqcup \{\alpha(l) | l \in L'\}$ then there is a γ such that $\langle L, \alpha, \gamma, M \rangle$ is a GC
- If γ is completely multiplicative $\forall M' \subseteq M \gamma(\sqcap M') = \sqcap \{\gamma(m) \mid m \in M'\}$ then there is a α such that $\langle L, \alpha, \gamma, M \rangle$ is a GC
- If GC then α is completely additive and γ is completely multiplicative

- Abstraction defined as:
- $\alpha(\{a\}) = \alpha(\{a, c\}) = \{a\}$
- $\alpha(\{b\}) = \alpha(\{b, c\}) = \{b\}$
- $\alpha(\{a, b\}) = \alpha(\{a, b, c\}) = \{a, b\}$
- $\alpha(\emptyset) = \emptyset$
- Then, $\gamma(\{a\}) = \sqcup \{l \mid \alpha(\{a\}) \subseteq \{a\}\} = \{a\} \sqcup \{a, c\} = \{a, c\}$

, LUb

- $\gamma(\{b\}) = \sqcup \{l \mid \alpha(\{a\}) \subseteq \{a\}\} = \{b\} \sqcup \{b, c\} = \{b, c\}$
- $\gamma(\{a, b\}) = \{a, b, c\} \sqcup \{a, c\} \sqcup \{a, b\} \dots = \{a, b, c\}$

Refined Analysis

- New correctness relation
 S ⊆ V × M with 𝔥 S m iff v R γ(m)

 New transition function f_M: M→
- New transition function $f_M: M \to M$ such that $f_M \supseteq \alpha \circ f_L \circ \gamma$
- **Theorem.** S is indeed a correctness relation.
- Theorem. S is preserved by any such f_M

Fixed Point Computation

S*

- To compute the result of an analysis we have to compute the fixpoint of $f_M: M \to M$, where M is a complete lattice
- This is usually done as $f^n_M(\bot)$ (ascending sequence)
 - Alternatively from T as a descending sequence
- If AKS stabilizes then it stabilizes at the lfp
 - Always stabilizes if f is continuous $f_M(\sqcup L') = \sqcup \{f(l) | l \in L'\}$
- If AKS stabilizes too slowly then use widening

Widening

- $S_0, S_1 = T(S_0), S_2 = T(S_1) = T^2(S_0), \dots Tn$
- $S_0, S_1, S_2, ...$
- $\nabla: L \times L \to L$ is a widening operator iff
 - $\forall l_1, l_2, l_1 \sqsubseteq l_1 \nabla l_2$ and $l_2 \sqsubseteq l_1 \nabla l_2$ (coarsens)
 - For all ascending chains $\{l_n\}$ in L the $\{l_n^{\nabla}\}$ chain eventually stabilizes
 - $l_0^{\nabla} = l_0$

•
$$l_n^{\nabla} = l_{n-1}^{\nabla} \nabla l_n$$
, for $n > 0$

- For a monotone function $f: L \to L$ on a complete lattice and ∇ define the sequence f_n^{∇}
 - \perp if n = 0• f_{n-1}^{∇} if n > 0 and $f(f_{n-1}^{\nabla}) \sqsubseteq f_{n-1}^{\nabla}$
 - $f_{n-1} \nabla f(f_{n-1} \nabla)$ otherwise
- Theorem. f_n^{∇} stabilizes at $f_m^{\nabla} \supseteq \text{lfp}(f)$
 - Safe over-approximation of lfp(f)

Conclusions

- Abstract interpretation is a widely used framework for static analysis of programs and now hybrid systems
 - Invariants
 - Termination
 - Type checking
- Example abstract domains
 - Intervals, Octagons (+/-x+/- $y \le c$), polyhedra
- Galois connections can be combined in series or in parallel to get new analyses
- Look at the references to learn more