Verifying nonlinear analog and mixed-signal circuits with inputs

Chuchu Fan, Yu Meng, Jürgen Maier, Ezio Bartocci, Sayan Mitra, Ulrich Schmid

Abstract: We present a new technique for verifying nonlinear and hybrid models with inputs. We observe that once an input signal is fixed, the sensitivity analysis of the model can be computed much more precisely. Based on this result, we propose a new simulation-driven verification algorithm and apply it to a suite of nonlinear and hybrid models of CMOS digital circuits under different input signals. The models are low-dimensional but with highly nonlinear ODEs, with nearly hundreds of logarithmic and exponential terms. Some of our experiments analyze the metastability of bistable circuits with very sensitive ODEs and rigorously establish the connection between metastability recovery time and sensitivity.

1. INTRODUCTION

Analog and mixed-signal circuits have provided a well-spring of hard problem instances for formal verification of hybrid systems (HS). Tools like HyTech (Henzinger et al., 1997), PHAVER (Frehse, 2008), SpaceEx (Frehse et al., 2011), Checkmate (Gupta et al., 2004), d/dt (Dang et al., 2004), and CoHo (Yan and Greenstreet, 2008) have targeted and successfully verified linear dynamical and hybrid models for tunnel-diode oscillators (Lata and Jagadagni, 2010), ΔΣ modulators (Gupta et al., 2004; Dang et al., 2004), filtered oscillators (Frehse et al., 2011), and digital arbiters (Yan and Greenstreet, 2008). Only recently, verification tools such as Flow* (Chen et al., 2013), NLTOOLBOX (Dang et al., 2009), iSAT (Fränzle et al., 2007), dReach (Kong et al., 2015), C2E2 (Fan et al., 2016) and CORA (Althoff and Grebenyuk, 2016), have demonstrated the feasibility of verifying nonlinear dynamic and hybrid models. These tools are still limited in terms of the complexity of the models and the type of external inputs they can handle, and they require quite often manual tuning of algorithmic parameters. The verification challenge for nonlinear circuits is further exacerbated by the fact that these problems often require state exploration in regions, where the model is very sensitive. For example, bi-stable circuits like a storage element or a flip-flop can be driven into a metastable state where the circuit may output signals in the forbidden region between logical 0 and logical 1 or experience very high-frequency oscillations for an arbitrary time, before resolving to a proper state (Marino, 1981).

In this paper, we present a novel technique for verifying nonlinear dynamic and hybrid models with externally controlled input functions. The approach builds upon previous work that combines numerical simulation with model-based sensitivity analysis for bounded invariant verification (Fan et al., 2016). For (bounded) invariant verification, we need to check whether the set of reachable states (up to a given time T) intersects with the unsafe set. In general, computing the exact bounded reachable set for nonlinear dynamic systems is hard. The simulation-driven approach circumvents this by over-approximating the reachable states using numerical simulations from a finite number of initial states and bloating these simulations by a factor determined by the sensitivity of the solutions to initial states. Previous work establishes that the resulting algorithms are sound, complete for robust invariant verification (Duggirala et al., 2013), and extendible to nonlinear hybrid models (Fan et al., 2016). The key ingredient for the effectiveness of this approach is the precise symbolic approximation of sensitivity as formalized by so-called discrepancy functions. If the discrepancy function is excessively conservative, then in practice, the verification algorithm may trigger many refinements, and never reach a decision. One major shortcoming of existing approaches is their inability to handle sensitivity analysis of models with external inputs. For a typical digital circuit like a simple inverter, the output trajectory V_{out} depends strongly on the input trajectory V_{in}. The naive approach for handling external inputs, namely, making the system closed by considering input signals as additional state variables, does not work as the resulting discrepancy functions become too conservative to be effective, i.e., the overapproximation error of the discrepancy function becomes too large (see the discussion in Section 2).

In this paper we therefore propose a new method for computing discrepancy functions for open models. We show that for a given input signal and a numerical solution of the model, it is possible to compute precise upper-bounds on solutions from neighboring initial states, experiencing the same input (Theorem 6). Using this new method for discrepancy computation, we have generalized the verification algorithm to handle nonlinear hybrid models with inputs. This approach was later inte-
Consider a cardiac oscillator described by the time-invariant ODEs \(\dot{x}_1 = -x_1(1 - 0.9x_1 + 0.9) + 2x_2u + 1; \dot{x}_2 = x_1 - 2x_2 \). For a smoothed sigmoidal input \(u \), the corresponding trajectories and (over-approximations of) reach sets projected on \(x_1(t), x_2(t) \) are shown in Figure 1.

Safety verification problem Given an \(n \)-dimensional dynamic system, an input signal \(u(t) \), a compact initial set \(\Theta \subset \mathbb{R}^n \), an unsafe set \(\text{unsafe} \subset \mathbb{R}^n \), and a time bound \(T > 0 \), the safety verification problem is to check whether \(\text{Reach}_u(\Theta, [0, T]) \cap \text{unsafe} = \emptyset \). Safety verification of non-linear ODEs and hybrid models is difficult even in the absence of inputs. For closed models (without inputs), recently developed simulation-driven verification algorithms decide the safety verification question rigorously by combining numerical simulations with sensitivity analysis of the trajectories with respect to their initial states (Donzé, 2010; Duggirala et al., 2013; Fan et al., 2016). These approaches are most effective when the sensitivity of the solutions to initial states can be precisely approximated.

The previous version of C2E2 does not support models with inputs. The seemingly natural idea of explicitly modeling the input \(u \) as a state variable, i.e., its controlling ODE, and then verifying the resulting closed model does not work. This is because inputs often model unstable signals—like the pulse \(u \) in Example 1—and in such cases the trajectories of the resulting closed system will turn out to be extremely sensitive with respect to the initial states and render simulation-driven verification ineffective. In Example 1, if we treat \(u \) as a state variable, the over-approximation reach set of \(x_1(t) \) using C2E2 is shown in Figure 1. The (prohibitive) blow-up in the over-approximation is due to the unstable input \(\dot{u} = u(1.8 - 1.5u) + 0.0015 \) that models the rising transition of the smoothed pulse.

2. SIMULATION-DRIVEN VERIFICATION

Notations For a real vector \(x \in \mathbb{R}^n \), \(||x|| \) denotes its \(l^\infty \) norm. For a set \(S \subset \mathbb{R}^n \), the diameter \(\text{dia}(S) \) is the supremum of the distance between any two points in \(S \). For \(\delta \geq 0 \), \(B_\delta(x) \) is the closed \(\delta \)-ball around \(x \). Closed \(\delta \)-balls around sets are defined as \(B_\delta(S) = \cup_{x \in S} B_\delta(x) \). \(S \oplus S' \) is the Minkowski sum of sets \(S \) and \(S' \). For a real matrix \(A \in \mathbb{R}^{n \times n}, (A)_{ij} \) is the entry on the \(i \)-th row and the \(j \)-th column; \(\text{eig}(A) \) is the largest eigenvalue of \(A \). For a pair of matrices \(A, \tilde{A} \) with \((A)_{ij} \leq (\tilde{A})_{ij} \) for all \(1 \leq i, j \leq n \), we define the \(\text{inner matrix} \) as the set of matrices: \([A, \tilde{A}] \triangleq \{ A \in \mathbb{R}^{n \times n} | (A)_{ij} \leq (\tilde{A})_{ij} \} \) for \(1 \leq i, j \leq n \).

Dynamic systems with inputs An \(n \)-dimensional dynamic system with \(m \)-dimensional input is described by an ordinary differential equation:

\[
\dot{x}(t) = f(x(t), u(t)),
\]

where \(f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \) is a continuously differentiable function, and a compact set \(\Theta \subset \mathbb{R}^n \) of initial states. The input is an integrable function \(u : [0, \infty) \to U \), where \(U \subset \mathbb{R}^m \) is a compact set. Given an input \(u \), the solution or the trajectory of the system is a function \(\xi_u : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}_{\geq 0} \to \mathbb{R}^n \), such that for any initial state \(x_0 \in \Theta \) and at any time \(t \in \mathbb{R}_{\geq 0} \), \(\xi_u(x_0, t) \) satisfies (1). A state \(x \in \mathbb{R}^n \) is reachable if there exists \(x_0 \in \Theta \) and a time \(t \geq 0 \) such that \(\xi_u(x_0, t) = x \). The set of all reachable states over an interval of time \([0, t_1] \) with input \(u \) is denoted by \(\text{Reach}_u(\Theta, [0, t_1]) \); \(\text{Reach}_u(\Theta, [t_1, t_1]) \) is written as \(\text{Reach}_u(\Theta, t) \) in brief.

Example 1 Consider a cardiac oscillator described by the time-invariant ODEs \(\dot{x}_1 = -x_1(x_1^2 + 0.9x_1 + 0.9) + 2x_2u + 1; \dot{x}_2 = x_1 - 2x_2 \). For a smoothed sigmoidal input \(u \), the corresponding trajectories and (over-approximations of) reach sets projected on \(x_1(t), x_2(t) \) are shown in Figure 1.
pect to the state variables are bounded over compact sets (Lemma 4). Using these two results, we establish that the distance between neighboring trajectories actually follows a differential equation related to the bound of the Jacobian matrix (Lemma 5). Finally, we prove that the upper bound on the largest eigenvalue of the symmetric part of the Jacobian provides us with a suitable discrepancy function (Theorem 6).

The Jacobian of f with respect to the state J_f and the input J_u are matrix-valued functions of all the first-order partial derivatives of f:

$$(J_f(x,u))_{ij} = \partial f_i(x,u)/\partial x_j; \quad (J_u(x,u))_{ij} = \partial f_i(x,u)/\partial u_j.$$

The following lemma from Fan and Mitra (2015) relates f with its Jacobian matrices based on the generalized mean value theorem, see Fan and Mitra (2015) for the detailed proof.

Lemma 3. For any continuously differentiable vector-valued function $f : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n$, $x, r \in \mathbb{R}^n$ and $u, w \in \mathbb{R}^m$,

$$f(x + r, u + w) - f(x,u) = \left(\int_0^1 J_f(x + sr, u + w)ds\right) \cdot r + \left(\int_0^1 J_u(x + wu + tw)dt\right) \cdot w,$$

where the integral is component-wise.

If f is continuously differentiable, all terms in the Jacobian matrix are continuous. Since the input signals are bounded, i.e., $\forall t > 0, u(t) \in U \subset \mathbb{R}^m$, the Jacobian matrix $J_f(x,u)$ over compact sets is also bounded:

Lemma 4. For any compact sets S, U there exists an interval matrix $[A, \bar{A}]$ s.t. $\forall x \in S, u \in U, J_f(x, u) \in [A, \bar{A}]$.

In fact, Lemma 4 follows since $J_f(x,u)$ is a continuous function of x, u, hence has a maximum and minimum value over the compact domains S, U, which define the matrix pair $[A, \bar{A}]$ of such values can be computed for a broad class of nonlinear functions using interval arithmetic formulas.

Lemma 5. Fix an input signal $u(t)$. Suppose there exists a compact convex set $S \subseteq \mathbb{R}^n$ and a time interval $[0, t_s]$ such that for any $x_t \in \mathbb{R}^n$, $t \in [0, t_s]$, the distance $y_u(t) = \xi_u(x, t) - \xi_u(x, t)$ satisfies $y_u(t) = A(t)y_u(t)$, for some $A(t) \in [A, \bar{A}]$, where $[A, \bar{A}]$ is an interval matrix satisfying Lemma 4.

Solution 5 is proved by differentiating $y_u(t)$ using Lemma 3. The detailed proof can be found at Fan et al. (2018). Using the differential equation in Lemma 5, we can get a discrepancy function by bounding the eigenvalues of $[A, \bar{A}]$.

Theorem 6. Fix the input signal $u(t)$ for system (1). Suppose the assumptions in Lemma 5 hold, and $\exists \gamma \in \mathbb{R}$ such that $\forall A(t) \in [A, \bar{A}],$

$$\text{eig}(A^T(t) + A(t))/2 \leq \gamma;$$

then for any $x, x' \in \Theta$ and for any $t \in [0, t_s]$, $\|\xi_u(x,t) - \xi_u(x',t)\| \leq \|x - x'\|e^{\gamma t}$.

Theorem 6 follows from Lemma 5 by applying Grönwall’s inequality. The proof can be found at Fan et al. (2018).

Theorem 6 obviously provides a discrepancy function $\beta_u(\|x - x'\|, t) = \|x - x'\|e^{\gamma t}$. However, computing one γ for the entire time horizon is usually too conservative to be directly used. Algorithm 2 in Fan and Mitra (2015) provides a method for constructing a reachtube using one simulation trajectory and initial partition size δ as input, and produces a sequence of coefficients that defines the piece-wise exponential discrepancy function. The algorithm consists of the following steps: a) First, using the Lipschitz constant, a coarse over-approximation of the reachable set up to a short time horizon T_s is constructed. Let this set be B. b) Compute the interval matrix $[A, \bar{A}]$, which bounds the possible values of the Jacobian matrix $J_f(x,u)$. c) Compute the largest eigenvalue $\text{eig}((A + \bar{A}) + (A + \bar{A})^T)/2$. From this value, an upper bound γ of the eigenvalue of $(A + T)/2$ for all $A \in [A, \bar{A}]$ is computed using a theorem from matrix perturbation theory. d) The upper bound γ (possibly negative) defines the discrepancy function $\beta_u(\delta, t) = \beta_u(\delta, t_0)e^{\gamma(t-t_0)}$ over the simulation time interval $[t_0, t + T_s]$, where $\beta_u(\cdot, \cdot)$ is the previous piece of the discrepancy function. Using this piece-wise discrepancy function, an over-approximation of the reachable set is finally computed.

Example 7. For Example 1, restricting x_1 to be within the range $[0.4, 0.6]$ and u to be within the range $[0.1, 0.2]$ provides $J_x \in [A, \bar{A}]$ for $A = [-3.06, 0.2:1, -2]$ and $\bar{A} = [-2.1, 0.4:1, -2]$. Using Algorithm 2 in Fan and Mitra (2015), we get that $\gamma = -1.05$ satisfies Equation (3). Therefore, $\beta_u(\|x-x'\|, t) = \|x-x'\|e^{-1.05t}$ is a discrepancy function for this system with fixed input $u(t)$.

4. VERIFYING SYSTEM WITH FIXED INPUTS

To implement our novel method for computing discrepancy functions of open systems, the algorithm for simulation-driven verification (see Algorithm 1) published in Fan and Mitra (2015) can be used with minor modifications. For sake of completeness, we briefly discuss the key features here; for more details the reader is referred to (Fan and Mitra, 2015). Throughout this section, we fix an input signal $u(t)$ for the system (1).

Algorithm 1: Verification of systems with input

1. $\Theta \leftarrow \text{disj}(\Theta); \quad \epsilon \leftarrow \bar{\gamma}; \quad \tau \leftarrow \gamma; \quad \text{STB} \leftarrow \emptyset;\quad \delta \leftarrow \text{SAFE}$.
2. $C \leftarrow \text{Cover}(\Theta, \delta, \epsilon);$
3. while $C \neq \emptyset$ do
4. for $(x, \delta, \epsilon) \in C$ do
5. $\psi \leftarrow \text{Simulate}(x, u, T, \epsilon, \tau);$
6. $R \leftarrow \text{Blob}(\psi, \delta, \epsilon);$
7. if $R \cap \text{unsafe} = \emptyset$ then
8. $C \leftarrow C \setminus \{x, \delta, \epsilon\};$
9. $\text{STB} \leftarrow \text{STB} \cup R.$
10. else if $\exists j, R_j \subseteq \text{unsafe}$ then
11. $\text{return} \quad \text{UNS} \leftarrow \psi;$
12. else
13. $C \leftarrow C \cup \text{Cover}(B(x), \frac{\delta}{2}, \frac{\epsilon}{2}); \quad \tau \leftarrow \frac{\tau}{2};$
14. $\text{return} \quad \text{SAFE} \leftarrow \text{STB}.$

Function $\text{Cover}()$ returns a set of triples $\{(x, \delta, \epsilon)\}$, where x's are sample states, the union of $B(x)$ covers Θ completely, and ϵ is the precision of the simulation. Function $\text{Blob}(\psi, \delta, \epsilon)$ expands the simulation trace ψ by β_u to get the reachtube $R = \{(x_i, t_i)\}_{i=1}^{k}$. That is, for each $i = 1, \ldots, k$, $x_i \leftarrow \text{hull}(R_{i-1}, R_i) \ominus \text{max}_{t \in [t_{i-1}, t_i]} \beta_u(\delta + \epsilon, t)$. From Theorem 6, it follows that $\text{Blob}(\psi, \delta, \epsilon)$ contains $\text{Reach}_u(B(x), [0, T])$. There are two important data structures used in Algorithm 1: C is a collection of the triples returned by $\text{Cover}()$, which represents the subset of Θ
that has not yet been proved safe, and STB that stores the bounded-time reachtube.

Initially, \(\mathcal{C} \) contains a singleton \((x_0, \delta_0 = \text{dia}(\Theta), \epsilon_0)\), where \(\Theta \subseteq B_\delta(x_0) \) and \(\epsilon_0 \) is a small positive constant. For each triple \((x, \delta, \epsilon) \in \mathcal{C} \), the \textbf{while}-loop from Line 3 checks the safety of the reachtube from \(B_\delta(x) \), which is computed in Line 5-6. \(\psi \) is a \((r, \tau, \xi)\)-simulation from \(x \) with input \(u(t) \), which is a sequence of time-stamped rectangles \((\{R_i(t_i)\}_{i=0}^k)\) and is guaranteed to contain the trajectory \(\xi(x, T) \). Blowing the simulation result \(\psi \) by the discrepancy function \(\beta_\delta \) we get \(R_a \), a \((B_\delta(x), T)\)-reachtube with input \(u(t) \). If \(R \) is disjoint from unsafe, then the reachtube from \(B_\delta(x) \) is safe and the corresponding triple can be safely removed from \(\mathcal{C} \). If for some \(j \), \(R_j \) (one rectangle of the simulation) is completely contained in the unsafe set, then we can get a counterexample of a trajectory that violates the safety property. Otherwise, the safety of \(\text{Reach}_u(B_\delta(x), [0, T]) \) is inconclusive and a refinement of \(B_\delta(x) \) is made with some smaller \(\delta \) and smaller \(\epsilon, \tau \).

Recall that the safety verification problem requires us to check whether \(\text{Reach}_u(\Theta, [0, T]) \cap \text{unsafe} = \emptyset \). If there exists some \(\epsilon > 0 \) such that \(B_\epsilon(\text{Reach}_u(\Theta, [0, T])) \cap \text{unsafe} = \emptyset \), we say the system is \textbf{robustly safe}. If there exists some \(\epsilon > 0 \), \(x \in \Theta \), such that \(B_{\epsilon}(R_i) \subseteq \text{unsafe} \) for some \(R_i \) in the simulation from \(x \), \(\{\{R_i(t_i)\}_{i=0}^k\} \), we say the system is \textbf{robustly unsafe}. The algorithm returns SAFE if \(\text{Reach}_u(\Theta, [0, T]) \) has no intersection with unsafe, along with a robustly safe reachtube STB. It returns UNSAFE upon finding a counter-example, i.e., the simulation \(\psi \) with an interval fully contained in unsafe.

According to Theorem 6, if \(\delta \) gets smaller, the value of the discrepancy function \(\beta_\delta \) becomes smaller (i.e., the reachtube is arbitrary close to the simulation), which guarantees that the algorithm always terminates.

\textbf{Theorem 8. (Soundness & completeness).} Given a unsafe set unsafe, time bound \(T \) and fixed input \(u(t) \) for system (1), if Algorithm 1 using the discrepancy of Theorem 6 returns SAFE or UNSAFE, then (1) is safe or unsafe, respectively. It terminates if (1) is robustly safe or unsafe.

When extending this verification algorithm to work for open hybrid models, the main complication is that spurious transitions may arise from the over-approximations in the computed reach sets. Thus, we have to keep track of possibly spurious mode changes from genuine ones. This is what is implemented in the new version of C2E2 used in Section 6 for verifying hybrid circuit models.

5. MODELING OF CMOS CIRCUITS

To investigate the feasibility of our approach, we analyzed models of \textbf{complementary metal-oxide-semiconductor} (CMOS) circuits, the most common technology nowadays. Its basic components are two types of transistors (nMOS and pMOS), which differ in physical and, hence, electrical properties. These two are sufficient to build any desired logic. Essentially, both deliver current based on the voltages applied to their gate, drain and source contact. Modern digital simulation tools like Modelsim or NC-Verilog consider transistors as simple switches, however. Such tools allow fast functional and timing analysis of complex circuits, but lack sufficient accuracy for critical parts of a circuit design. The latter is provided by analog simulations, using state-of-the-art tools like \textit{Spice}. They are capable of handling very detailed transistor models, consisting of tens to hundreds of equations and configured by hundreds of manufacturer-provided parameters. However, analog simulations quickly reach their limits in terms of simulation complexity for circuits consisting of more than a few tens of transistors and/or signal traces beyond milliseconds in real-time.

In order to decrease simulation times, simplified models have been developed (e.g. Arora, 1993). They are smaller than \textit{Spice} models (at most six equations are required), and thus amenable to general simulation tools like \textit{MATLAB}. Despite the reduced complexity, these models can still capture subtle phenomena like channel length modulation and carrier velocity saturation.

![Fig. 2. Internal structure of CMOS inverter](image2.png)

![Fig. 3. Internal structure of NOR gate](image3.png)

In our model (Maier, 2017), each transistor operates in one of three different operation regions: the sub-threshold (ST) region, where very little current is delivered, the ohmic region (OHM), where the current scales linearly with the voltage between source and drain, and the saturation region (SAT), where the current only changes moderately. The actual behavior within every region is described by a set of differential equations, which involve several fitting parameters. These differ for nMOS and pMOS transistors and are either inferred directly from \textit{Spice} model variables or fitted to \textit{Spice} simulations.

Hybrid inverter model The simplest CMOS gate is an inverter (see Figure 2), which consists of two transistors stacked above each other. Its output voltage \(V_{\text{out}} \) is the inverse of the input voltage \(V_{\text{in}} \), ideally \(V_{\text{out}} = V_{\text{DD}} - V_{\text{in}} \) with \(V_{\text{DD}} \) denoting the supply voltage. In reality, \(V_{\text{out}} \) is determined by

\begin{equation}
\dot{V}_{\text{out}} = (1/C_L)V_{\text{out}}
\end{equation}

where \(C_L \) is the external load capacitance seen by the output. The output current \(I_{\text{out}} \) is the difference between the current delivered by \(\odot \) and the current consumed by \(\odot \), which both depend upon \(V_{\text{in}} \) and \(V_{\text{out}} \). Since each of the two transistors can operate in three different regions, our basic hybrid inverter model has nine modes. As two of those modes are unreachable, the hybrid model InvHy (see Figure 5 in Fan et al. (2018)) has only 7 modes.

Uniform model Given that the number of modes increases exponentially with the number of transistors in a circuit, it is natural to consider ways of avoiding multiple modes already in the transistor models: If the behavior of a transistor could be described by a single, possibly more
complex equation that is valid for all operation regions, the need for a hybrid model vanishes altogether.

Our uniform model InvUni (Maier, 2017) accomplishes this by smoothening the boundaries between different regions, using suitably chosen continuous functions. This results in a single non-linear equation (involving exponentials and logarithms), which describes the current through the transistor over the whole operation range. In conjunction with equation (4), this finally leads to a non-linear ODE that describes the behavior of V_{out} depending on V_{in}. Empirical validations using Spice simulations revealed a surprisingly good modeling accuracy.

Apart from dramatically reduced model complexity, a key feature of our uniform model is the straightforward development of models for multi-transistor circuits like the NOR gate shown in Figure 3. In a hybrid model, this gate would blow up to a system of $3^4 \approx 81$ states; here, we end up with a system of two non-linear ODEs only:

$$\dot{V}_{in} = \frac{1}{C_M} (I_1 - I_2); \dot{V}_{out} = \frac{1}{C_L} (I_2 - I_3 - I_4)$$

Herein, I_X represents the current through transistor X.

The change of V_m is proportional to the current charging C_M (cp. eq. (4)) and is just the difference between the currents flowing through the transistors 1 and 2. Note that C_M represents the capacitances of the transistor contacts only, and is hence several orders of magnitude smaller than C_L. The derivative of V_{out} is finally determined by the current passing through 2 minus the ones consumed by the transistors 3 and 4.

6. EXPERIMENTS AND RESULTS

We have implemented the discrepancy computation and verification algorithm for open models in the new version of C2E2 and used it to verify several challenging CMOS circuits (see footnote 1). Due to lack of space, we restrict our discussion here to a few examples that demonstrate the principal feasibility, as well as particular strengths, of our approach. Experimenting with larger and more complex circuits, which is mandatory for validating scalability, for example, will be part of our future work.

Input, simulation and verification: As external input signals, we use both ramp (Ramp) and sigmoidal signals (Sig), which are generated using two separate hybrid automata; a 4-state one for Ramp and 2-state one for Sig. We successfully verified several properties of InvHy, InvUni, NOR-gate, and OR-gate (is easily derived from the NOR shown in Figure 3 by appending an inverter) models using the tool. For all the models, we set the unsafe set to be $V_{out} > 1.32V$ (110% of V_{DD}) and the time horizon to be 6.4s. The first one uses the hybrid model presented in Section 5, so we end up with $7 \times 4 = 28$ modes in the Ramp case and $7 \times 2 = 14$ in the Sig case. All other circuits are based on the uniform model. All circuit models based on the uniform model have very complex descriptions, i.e., hundreds of logarithmic and exponential terms in their ODEs. Figure 4 shows some simulation results for the NOR-gate.

In addition, we also investigated a two-inverter loop, where the input of one inverter is connected to the output of the other one, implementing a simple state-holding device. In contrast to the other circuits used in our experiments, however, it does not have an external input.

2 A comparison with tools like SpaceEx and Coho, which support only linear systems, is omitted.

Fig. 4. NOR gate output voltage over-approximation set for $V_{in} =$ Ramp (left) and $V_{in} =$ Sig (right). Different colors indicate different modes in the model.

Consequently, we just set the output voltages to some initial values and let the circuit run. Generally, all the simulations behave as expected and show smooth output transitions even when activated by a ramp at its input. Verification shows that, despite initial state uncertainty, the unsafe set $V_{out} > 1.32V$ is not reached and simultaneously provides the complete reachtube within the safe set. For example, Fig. 4 shows that the reachtube converges quickly to a deterministic signal trace. Total verification time, split between simulation (Sim.) and discrepancy computation (Discr.), is shown in Table 1.

<table>
<thead>
<tr>
<th>Model</th>
<th>Verification parameters</th>
<th>Timing split [s]</th>
<th>time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Steps</td>
<td>Initial Set</td>
<td>Sim.</td>
</tr>
<tr>
<td>InvHy</td>
<td>25.6k</td>
<td>$V_{out} \in [1.16, 1.2]$</td>
<td>7</td>
</tr>
<tr>
<td>InvUni</td>
<td>12.8k</td>
<td>$V_{out} \in [1.16, 1.2]$</td>
<td>7</td>
</tr>
<tr>
<td>NOR</td>
<td>32.0k</td>
<td>$V_{out} \in [1.16, 1.2]$</td>
<td>223</td>
</tr>
<tr>
<td>OR</td>
<td>320k</td>
<td>$V_{out} \in [1.189, 1.201]$</td>
<td>$V_{out} \in [0.00002]$</td>
</tr>
<tr>
<td>InvHy</td>
<td>25.6k</td>
<td>$V_{out} \in [1.16, 1.2]$</td>
<td>7</td>
</tr>
<tr>
<td>InvUni</td>
<td>12.8k</td>
<td>$V_{out} \in [1.16, 1.2]$</td>
<td>3</td>
</tr>
<tr>
<td>NOR</td>
<td>32.0k</td>
<td>$V_{out} \in [1.16, 1.2]$</td>
<td>112</td>
</tr>
<tr>
<td>OR</td>
<td>320k</td>
<td>$V_{out} \in [1.189, 1.201]$</td>
<td>$V_{out} \in [0.00002]$</td>
</tr>
<tr>
<td>InvLoop</td>
<td>64k</td>
<td>$V_{1} \in [0.5, 0.6]$</td>
<td>$V_{2} \in [0.5, 0.6]$</td>
</tr>
</tbody>
</table>

Table 1. Verification of InvHy, InvUni, NOR-gate and OR-gate with Ramp (top) and Sig (bottom) input and InvLoop without input on a standard laptop (16G RAM, Intel Core i7 CPU). All verification results are safe.

We also provide a comparison with several state-of-the-art nonlinear\(^2\) hybrid system verification tools, namely, FloRea* (Chen et al., 2013), iReach (Kong et al., 2015) and CORA (Althoff and Grebenyuk, 2016). The comparison results are reported at Fan et al. (2018).

Metastability analysis: Any bistable digital circuit can be driven into a metastable state (Marino, 1981) in which it may output voltage values in the forbidden region between 0 and 1 or experience very high-frequency oscillations for an arbitrary time, before it resolves to a proper digital state again. Verifying whether a circuit may experience metastable behavior is challenging because it arises in highly nonlinear and sensitive parts of its state space.

In order to demonstrate the capability of C2E2 to predict metastable behavior correctly, we use an OR-gate with its output fed back to one of its inputs. This circuit implements a storage loop, which is capable of memorizing a rising transition on its second input. It has been shown in (Függer et al., 2015) that it can be driven into a...
metastable state, namely, by an input pulse that is shorter than the delay of the feedback loop.

Figure 5 shows input (top) and simulation traces (middle) of this circuit computed by C2E2 for different initial values of V_{out}. The reach tube (bottom), corresponding to the output trace sticking longest to a value around 0.6 V, shows a blow up to several thousand Volts, which is physically impossible but indicates the very high sensitivity of the underlying system of ODEs in the metastable region: Even the slightest disturbances of the initial state results in very different trajectories, in particular, in very different metastability resolution times, after which V_{out} resolves to 0 or 1. Albeit this is in accordance with what is known about metastability, to the best of our knowledge, this is the first reachability analysis of circuits demonstrating metastable behavior.

7. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a novel approach suitable for verifying highly sensitive non-linear ODEs with arbitrary external inputs. Its modeling power was shown by successfully implementing several CMOS circuit models like inverter, NOR gate and memory elements, based on both a hybrid and a uniform non-linear transistor model with highly sensitive ODEs and hundreds of nonlinear terms. Moreover, we also succeeded to verify the metastable behavior of a memory element, which demonstrates the ability of our approach to handle highly sensitive ODEs. The results of this paper suggest several interesting directions for future research. First, for addressing the relatively large simulation time for complex models, it would be worthwhile to investigate state-of-the-art robust ODE-solvers for stiff ODEs. Another direction would be to generalize the core verification algorithm in order to handle infinite sets of input signals. Finally, we envision promising applications in the area of advanced digital circuit analysis, where C2E2 could be used for verifying metastable behavior of circuits like Schmitt-Trigger (Steininger et al., 2016).

ACKNOWLEDGMENTS

We would like to thank the developers of CORA, dReach and Flow* for their support while porting our models.

REFERENCES

