
Verse: A Python Library for Reasoning
About Multi-agent Hybrid System

Scenarios

Yangge Li(B) , Haoqing Zhu(B) , Katherine Braught , Keyi Shen ,
and Sayan Mitra(B)

Coordinated Science Laboratory, University of Illinois
Urbana-Champaign, Champaign, USA

{li213,haoqing3,braught2,keyis2,mitras}@illinois.edu

Abstract. We present the Verse library with the aim of making hybrid
system verification more usable for multi-agent scenarios. In Verse, deci-
sion making agents move in a map and interact with each other through
sensors. The decision logic for each agent is written in a subset of Python
and the continuous dynamics is given by a black-box simulator. Multiple
agents can be instantiated, and they can be ported to different maps
for creating scenarios. Verse provides functions for simulating and veri-
fying such scenarios using existing reachability analysis algorithms. We
illustrate capabilities and use cases of the library with heterogeneous
agents, incremental verification, different sensor models, and plug-n-play
subroutines for post computations.

Keywords: Scenario verification · Reachability · Hybrid Systems

1 Introduction

Automatic verification tools for hybrid systems have been used to analyze linear
models with thousands of continuous dimensions [1,5,6] and nonlinear models
inspired by industrial applications [6,14]. The state of the art and the chal-
lenges are discussed in a recent survey [11]. Despite the potentially large user
base, currently this technology is inaccessible without formal methods training.
Automatic hybrid verification tools [10,13,17,25,31] require the input model to
be written in a tool-specific language. Tools like C2E2 [15] attempt to trans-
late models from Simulink/Stateflow, but the language-barrier goes down to the
underlying math models. The verification algorithms are based on variants of the
hybrid automaton [3,21,24] which requires the discrete states (or modes) to be
spelled out explicitly as a graph, with guards and resets labeling the transitions.
We discuss related works in more detail in Sect. 6, including recently developed
libraries that address usability barrier [5,7,8].

This research was funded in part by NASA University Leadership Initiative grant
(80NSSC22M0070) Robust and Resilient Autonomy for Advanced Air Mobility.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13964, pp. 351–364, 2023.
https://doi.org/10.1007/978-3-031-37706-8_18

https://doi.org/10.6084/m9.figshare.22679485.v6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37706-8_18&domain=pdf
http://orcid.org/0000-0003-4633-9408
http://orcid.org/0009-0006-1176-6011
http://orcid.org/0000-0002-9838-8028
http://orcid.org/0009-0005-5645-759X
http://orcid.org/0000-0002-6672-8470
https://doi.org/10.1007/978-3-031-37706-8_18


352 Y. Li et al.

In this paper, we present Verse, a Python library that aims to make hybrid
technologies more usable for multi-agent scenarios. The key features imple-
mented are as follows: (1) In Verse, users write scenarios in Python. User-defined
functions can be used to create complex agents, invariant requirements can be
written as assert statements, and scenarios can be created by instantiating mul-
tiple agents, all using the standard Python syntax. Verse parses this scenario
and constructs an internal representation of the hybrid automaton for simula-
tion and analysis. (2) Verse introduces an additional structure, called map, for
defining the modes and the transitions of a hybrid system. Map contains tracks
that can capture geometric objects (e.g., lanes or waypoints) that make it possi-
ble to create new scenarios just by instantiating agents on new maps. With track
modes, users do not have to explicitly write different modes for a vehicle following
different waypoint segments. Finally, (3) Verse comes with functions for simula-
tion and safety verification via reachability analysis. Developers can implement
new functions, plug-in existing tools, or implement advanced algorithms, e.g., for
incremental verification. In this tool paper, we illustrate use cases with heteroge-
neous agents and different scenario setups, the flexibility of plugging in different
reachability algorithms and the ability to develop more advanced algorithms
(Sect. 5). Verse is available at https://github.com/AutoVerse-ai/Verse-library.

2 Overview of Verse

We will highlight the key features of Verse with an example. Consider two drones
flying along three parallel ∞-shaped tracks that are vertically separated in space
(shown by black lines in Fig. 1). Each drone has a simple collision avoidance
logic: if it gets too close to another drone on the same track, then it switches to
either the track above or the one below. A drone on T1 has both choices. Verse
enables creation, simulation, and verification of such scenarios using Python, and
provides a collection of powerful functions for building new analysis algorithms.

Fig. 1. Left: A 3-d ∞-shaped map with example track mode labels. Center: Simulation
of a red drone nearing the blue drone on T1 and nondeterministically moving to T0 or T2.
Both branches are computed by Verse’s simulate function. Right: Computed reachable
sets of the two drones cover more possibilities: either drones can switch tracks when
they get close. All four branches are explored by Verse. The branch for blue drone
moving downwards violates safety as it may collide with the red drone following T1.

Creating Scenarios. Agents like the drones in this example are described by
a simulator and a decision logic in an expressive subset of Python (see code
in Fig. 2 and [26] for more details). The decision logic for an ego agent takes
as input its current state and the (observable) states of the other agents, and

https://github.com/AutoVerse-ai/Verse-library


Verse: A Python Library for Reasoning 353

updates the discrete state or the mode of the ego agent. For example, in lines 41–
43 of Fig. 2 an agent updates its mode to begin a track change if there is any
agent near it. It may also update the continuous state of the ego agent. The
mode of an agent, as we shall see later in Sect. 3, has two parts—a tactical mode
corresponding to agent’s decision or discrete state, and a track mode that is
determined by the map. Using the any and all functions, the agent’s decision
logic can quantify over other agents in the scene. User defined functions are
also allowed (is_close, Fig. 2 line 41). Verse will parse this decision logic to
create an internal representation of the transition graph of the hybrid model
with guards and resets. The simulator can be written in any language and is
treated as a black-box1. For the examples discussed in this paper, the simulators
are also written in Python. Safety requirements can be specified using assert
statements (see Fig. 5).

38 def decisionLogic(ego: State, others: List[State], track_map):
39 next = copy.deepcopy(ego)
40 if ego.tactical_mode == TacticalMode.Normal:
41 if any((is_close(ego, other) and ego.track_mode==other.track_mode) for other in

others):↪→
42 next.tactical_mode = TacticalMode.MoveDown
43 next.track_mode = track_map.Tg(ego.track_mode, ego.tactical_mode,

TacticalMode.MoveDown)↪→
44 if any((is_close(ego, other) and ego.track_mode==other.track_mode) for other in

others):↪→
45 next.tactical_mode = TacticalMode.MoveUp
46

47 if ego.tactical_mode == TacticalMode.MoveUp:
48 if in_interval(track_map.altitude(ego.track_mode)-ego.z, -1, 1):
49 next.tactical_mode = TacticalMode.Normal
50 next.track_mode = track_map.Tg(ego.track_mode, ego.tactical_mode,

TacticalMode.Normal)↪→
51

Fig. 2. Decision Logic Code Snippet from drone_controller.py.

Maps and Sensors. The map of a scenario specifies the tracks that the agents can
follow. While a map may have infinitely many tracks, they fall in a finite number
of track modes. For example, in this ∞-shaped map, each layer is assigned to a
track mode (T0-2) and all the tracks between each pair of layers are also assigned
to a track mode (M10, M01 etc.). When an agent makes a decision and changes
its tactical mode, the map object determines the new track mode for the agent.
The map abstraction makes scenarios succinct and enables portability of agents
across different maps. Besides creating from scratch, Verse provides functions
for generating map objects from OpenDRIVE [4] files.

1 This design decision for Verse is relatively independent. For reachability analysis,
Verse currently uses black-box statistical approaches implemented in DryVR [14] and
NeuReach [35]. If the simulator is available as a white-box model, such as differential
equations, then Verse could use model-based reachability analysis.



354 Y. Li et al.

The sensor function defines which variables from an agent are visible to
other agents. The default sensor function allows all agents to see all variables;
we discuss how the sensor function can be modified to include bounded noise in
Sect. 5. A map, a sensor and a collection of (compatible) agents together define
a scenario object (Fig. 3). In the first few lines, the drone agents are created,
initialized, and added to the scenario object. A scenario can have heterogeneous
agents with different decision logics.

32 scenario = Scenario()
33 drone_red = DroneAgent(’drone_red’, file_name=’drone_controller.py’)
34 drone_red.set_initial([init_l_1, init_u_1],(CraftMode.Normal, TrackMode.T1))
35 scenario.add_agent(drone_red)
36 drone_blue = DroneAgent(’drone_blue’, file_name=’drone_controller.py’)
37 scenario.add_agent(drone_blue)
38

39 scenario.set_map(M6())
40 scenario.set_sensor(BaseSensor())
41

42 traces = scenario.verify(40, time_step)

Fig. 3. Scenario specification snippet.

Simulation and Reachability. Once a scenario is defined, Verse’s simulate func-
tion can generate simulation(s) of the system, which can be stored and plotted.
As shown in Fig. 1(Center), a simulation from a single initial state explores all
possible branches that can be generated by the decision logics of the interact-
ing agents, upto a specified time horizon. Verse verifies the safety assertions
of a scenario by computing the over-approximations of the reachable sets for
each agent, and checking these against the predicates defined by the assertions.
Figure 1(Right) visualizes the result of such a computation performed using the
verify function. In this example, the safety condition is violated when the blue
drone moves downward to avoid the red drone. The other branches of the sce-
nario are proved to be safe. The simulate and verify functions save a copy
of the resulting execution tree, which can be loaded and traversed to analyze
the sequences modes and states that leads to safety violations. Verse makes it
convenient to plug in different reachability subroutines. It also provides power-
ful functions to implement advanced verification algorithms, such as incremental
verification.

3 Scenarios in Verse

A scenario in Verse is specified by a map, a collection of agents in that map,
and a sensor function that defines the part of each agent visible to other agents.
We describe these components below, and in Sect. 4, we will discuss how they
formally define a hybrid system.

Tracks, Track Modes, and Maps. A workspace W is an Euclidean space
in which the agents reside (For example, a compact subset of R

2 or R
3). An

agent’s continuous dynamics makes it roughly follow certain continuous curves



Verse: A Python Library for Reasoning 355

in W , called tracks, and occasionally the agent’s decision logic changes the track.
Formally, a track is simply a continuous function ω : [0, 1] → W , but not all such
functions are valid tracks. A map M defines the set of tracks ΩM it permits.
In a highway map, some tracks will be aligned along the lanes while others will
correspond to merges and exits.

We assume that an agent’s decision logic does not depend on exactly which of
the infinitely many tracks it is following, but instead, it depends only on which
type of track it is following or the track mode. In the example in Sect. 2, the
track modes are T0, T1, M01, etc. Every (blue) track for transitioning from point
on T0 to the corresponding point on T1 has track mode M01. A map has a finite
set of track modes LM and a labeling function VM : ΩM → LM that maps the
track to a track mode. It also has a mapping gM : W × LM → ΩM that maps
a track mode and a specific position in the workspace to a specific track.

Finally, a Verse agent’s decision logic can change its internal mode or tac-
tical mode P (E.g., Normal to MoveUp). When an agent changes its tactical
mode, it may also update the track it is following and this is encoded in the
track graph function: TgM : LM × P × P → LM which takes the current
track mode, the current and the next tactical mode, and generates the new
track mode the agent should follow. For example, when the tactical mode of
a drone changes from Normal to MoveUP while it is on T1, this map function
TgM(T1, Normal, MoveUp) = M10 informs that the agent should follow a track
with mode M10. These sets and functions together define a Verse map object
M = 〈LM, VM, gM, TgM〉. We will drop the subscript M when the map being
used is clear from context.

Agents. A Verse agent is defined by modes and continuous state variables, a
decision logic that defines (possibly nondeterministic) discrete transitions, and a
flow function that defines continuous evolution. An agent A is compatible with a
map M if the agent’s tactical modes P are a subset of the allowed input tactical
modes for Tg. This makes it possible to instantiate the same agent on different
compatible maps. The mode space for an agent instantiated on map M is the set
D = L × P , where L is the set of track modes in M and P is the set of tactical
modes of the agent. The continuous state space is X = W × Z, where W is the
workspace (of M) and Z is the space of other continuous state variables. The
(full) state space is the Cartesian product Y = X ×D. In the two-drone example
in Sect. 2, the continuous states variables are the positions and velocities along
the three axes of the workspace. The modes are 〈Normal, T1〉, 〈MoveUp, M10〉, etc.

An agent A in map M with k − 1 other agents is defined by a tuple A =
〈Y, Y 0, G,R, F 〉, where Y is the state space, Y 0 ⊆ Y is the set of initial states.
The guard G and reset R functions jointly define the discrete transitions. For
a pair of modes d, d′ ∈ D, G(d, d′) ⊆ Xk defines the condition under which a
transition from d to d′ is enabled. The R(d, d′) : Xk → X function specifies how
the continuous states of the agent are updated when the mode switch happens.
Both of these functions take as input the sensed continuous states of all the other
k−1 agents in the scenario. The G and the R functions are not defined separately,



356 Y. Li et al.

but are extracted by the Verse parser from a block of structured Python code as
shown in Fig. 2. The discrete states in if conditions and assignments define the
source and destination of discrete transitions. if conditions involving continuous
states define guards for the transitions and assignments of continuous states
define resets. Expressions with any and all functions are unrolled to disjunctions
and conjunctions according to the number of agents k.

For example in Fig. 2, Lines 47–50 define transitions 〈MoveUp, M10〉 to
〈Normal, T0〉 and 〈MoveUp, M21〉 to 〈Normal, T1〉. The change of track mode is
given by the Tg function. The guard for this transition comes from the if con-
dition at Line 48, G(〈MoveUp, M10〉, 〈Normal, T0〉) = {x | −1 < T0.pz −x.pz < 1}
for x ∈ X given by user defined in_interval function. Here continuous states
remain unchanged after transition.

The final component of the agent is the flow function F : X ×D ×R
≥0 → X

which defines the continuous time evolution of the continuous state. For any
initial condition 〈x0, d0〉 ∈ Y , F (x0, d0)(·) gives the continuous state of the
agent as a function of time. In this paper, we use F as a black-box function (see
Footnote 1).

Sensors and Scenarios. For a scenario with k agents, a sensor function S :
Y k → Y k defines the continuous observables as a function of the continuous
state. For simplifying exposition, in this paper we assume that observables have
the same type as the continuous state Y , and that each agent i is observed by
all other agents identically. This simple, overtly transparent sensor model, still
allows us to write realistic agents that only use information about nearby agents.
In a highway scenario, the observable part of agent j to another agent i may be
the relative distance yj = xj − xi, and vice versa, which can be computed as a
function of the continuous state variables xj and xi. A different sensor function
which gives nondeterministic noisy observations, appears in Sect. 5.

A Verse scenario SC is defined by (a) a map M, (b) a collection of k agent
instances {A1...Ak} that are compatible with M, and (c) a sensor S for the k
agents. Since all the agents are instantiated on the same compatible map M,
they share the same workspace. Currently, we require agents to have identical
state spaces, i.e., Yi = Yj , but they can have different decision logics and different
continuous dynamics.

4 Verse Scenario to Hybrid Verification

In this section, we define the underlying hybrid system H(SC), that a Verse sce-
nario SC specifies. The verification questions that Verse is equipped to answer
are stated in terms of the behaviors or executions of H(SC). Verse’s notion of
a hybrid automaton is close to that in Definition 5 of [14]. The only uncom-
mon aspect in [14] is that the continuous flows may be defined by a black-box
simulator functions, instead of white-box analytical models (see Footnote 1).

Given a scenario with k agents SC = 〈M, {A1, ...Ak},S, P 〉, the correspond-
ing hybrid automaton H(SC) = 〈X,X0,D,D0,G,R,TL〉, where



Verse: A Python Library for Reasoning 357

1. X :=
∏

i Xi is the continuous state space. An element x ∈ X is called a state.
X0 :=

∏
i X0

i ⊆ X is the set of initial continuous states.
2. D :=

∏
i Di is the mode space. An element d ∈ D is called a mode. D0 :=∏

i D0
i ⊆ D is the finite set of initial modes.

3. For a mode pair d,d′ ∈ D, G(d,d′) ⊆ X defines the continuous states from
which a transition from d to d′ is enabled. A state x ∈ G(d,d′) iff there
exists an agent i ∈ {1, ..., k}, such that xi ∈ Gi(di,d′

i) and dj = d′
j for j �= i.

4. For a mode pair d,d′ ∈ D, R(d,d′) : X → X defines the change of contin-
uous states after a transition from d to d′. For a continuous state x ∈ X,
R(d,d′)(x) = Ri(di,d′

i)(x) if x ∈ Gi(di,d′
i), otherwise = xi.

5. TL is a set of pairs 〈ξ,d〉, where the trajectory ξ : [0, T ] → X describes the
evolution of continuous states in mode d ∈ D. Given d ∈ D,x0 ∈ X, ξ should
satisfy ∀t ∈ R

≥0, ξi(t) = Fi(x0
i ,di)(t).

We denote by ξ.fstate, ξ.lstate, and ξ.ltime the initial state ξ(0), the last
state ξ(T ), and ξ.ltime = T . For a sampling parameter δ > 0 and a length m,
a δ-execution of a hybrid automaton H = H(SC) is a sequence of m labeled
trajectories α := 〈ξ0,d0〉, ..., 〈ξm−1,dm−1〉, such that (1) ξ0.fstate ∈ X0,d0 ∈
D0, (2) For each i ∈ {1, ...,m − 1}, ξi.lstate ∈ G(di,di+1) and ξi+1.fstate =
R(di,di+1)(ξi.lstate), and (3) For each i ∈ {1, ...,m − 1}, ξi.ltime = δ for
i �= m − 1 and ξi.ltime ≤ δ for i = m − 1.

We define first and last state of an execution α = 〈ξ0,d0〉, ..., 〈ξm−1,dm−1〉
as α.fstate = ξ0.fstate, α.lstate = ξm−1.lstate and the first and last mode
as α.fmode = d0 and α.lmode = dm−1. The set of reachable states is defined
by ReachH := {α.lstate | α is an execution of H}. In addition, we denote the
reachable states in a specific mode d ∈ V as ReachH(d) and ReachH(T ) to be
the set of reachable states at time T . Similarly, denoting the unsafe states for
mode d as U(d), the safety verification problem for H can be solved by checking
whether ∀d ∈ D, ReachH(d) ∩ U(d) = ∅. Next, we discuss Verse functions for
verification via reachability.

Verification Algorithms in Verse. The Verse library comes with several
built-in verification algorithms, and it provides functions that users can use
to implement powerful new algorithms. We describe the basic algorithm and
functions in this section.

Consider a scenario SC with k agents and the corresponding hybrid automa-
ton H(SC). For a pair of modes, d,d′ the standard discrete postd,d′ : X → X
and continuous postd,δ : X → X operators are defined as follows: For any
state x,x′ ∈ X, postd,d′(x) = x′ iff x ∈ G(d,d′) and x′ = R(d,d′)(x); and,
postd,δ(x) = x′ iff ∀i ∈ 1, ..., k, x′

i = Fi(xi,di, δ). These operators are also lifted
to sets of states in the usual way. Verse provides postCont to compute postd,δ and
postDisc to compute postd,d′ . Instead of computing the exact post, postCont
and postDisc compute over-approximations using improved implementations of
the algorithms in [14]. Verse’s verify function implements a reachability analy-
sis algorithm using these post operators. The algorithm constructs an execution
tree Tree = 〈V,E〉 up to depth m in breadth first order. Each vertex 〈S,d〉 ∈ V



358 Y. Li et al.

is a pair of a set of states and a mode. The root is 〈X0,d0〉. There is an edge from
〈S,d〉 to 〈S′,d′〉, iff S′ = postd′,δ(postd,d′(S)). The safety conditions are checked
when the tree is constructed. Currently, Verse implements only bounded time
reachability, however, basic unbounded time analysis with fixed-point checks
could be added following [14,32].

5 Experiments and Use Cases

We evaluate key features and algorithms in Verse through examples. We consider
two types of agents: a 4-d ground vehicle with bicycle dynamics and the Stanley
controller [22] and a 6-d drone with a NN-controller [23]. Each of these agents
can be fitted with one of two types of decision logic: (1) a collision avoidance
logic (CA) by which the agent switches to a different available track when it
nears another agent on its own track, and (2) a simpler non-player vehicle logic
(NPV) by which the agent does not react to other agents (and just follows its
own track at constant speed). We denote the car agent with CA logic as agent
C-CA, drone with NPV as D-NPV, and so on. We use four 2-d maps (M1-4)
and two 3-d maps M5-6. M1 and M2 have 3 and 5 parallel straight tracks,
respectively. M3 has 3 parallel tracks with circular curve. M4 is imported from
OpenDRIVE. M6 is the figure-8 map used in Sect. 2.

Safety Analysis with Multiple Drones in a 3-d Map. The first example is a
scenario with two drones—D-CA agent (red) and D-NPV agent (blue)—in map
M5. The safety assertion requires agents to always separate by at least 1m.
Figure 4(left) shows the computed reachable set, its projection on x-position,
and on z position. Since the agents are separated in space-time, the scenario is
verified safe. These plots are generated using Verse’s plotting functions.

Fig. 4. Left to right: (1) Computed reachtubes for a 2-drone scenario; (2) same reach-
tube projected on x-dimension, and (3) on z-dimension. Since there is no overlap in
space-time, no collision. (4) Reachtube for a 3-drone scenario, the red drone violates
the safety condition by entering the unsafe region after moving downward. (Color figure
online)

Checking Multiple Safety Assertions. Verse supports multiple safety assertions
specified using assert statements. For example, the user can specify unsafe
regions (Line 77–78) or safe separation between agents (Line 79–82) as shown
in Fig. 5. We add a second D-NPV to the previous scenario and both safety
assertions. The result is shown in the rightmost Fig. 4. In this scenario, D-CA
violates the safety property by entering the unsafe region after moving downward
to avoid collision. The behavior of D-CA after moving upward is not influenced.
There is no violation of safe separation. Verse allow users to extract the set of
reachable states and mode transitions that leads to a safety violation.



Verse: A Python Library for Reasoning 359

77 assert not (ego.x > 40 and ego.x < 50 and \
78 ego.y > -5 and ego.y < 5 and ego.z > -10 and ego.z < -6), "Unsafe Region"
79 assert not any(ego.x-other.x < 1 and ego.x-other.x > -1 and \
80 ego.y-other.y < 1 and ego.y-other.y > -1 and \
81 ego.z-other.z < 1 and ego.z-other.z > -1 \
82 for other in others), "Safe Separation"

Fig. 5. Safety assertions for three drone scenario.

Changing Maps. Verse allows users to easily create scenarios with different maps
and port agents across compatible maps. We start with a scenario with one C-CA
agent (red) and two C-NPV agents (blue, green) in M1. The safety assertion
is that the vehicles should be at least 1m apart in both x and y-dimensions.
Figure 6(left) shows the verification result and safety is not violated. However, if
we switch to map M3 by changing one line in the scenario definition, a reacha-
bility analysis shows that a safety violation can happen after C-CA merges left
Fig. 6(center). In addition, Verse allows importing map from OpenDRIVE [4]
format. An example is included in the extended version of the paper [26].

Fig. 6. Left: running the three car scenario on map with parallel straight lanes. Center:
same scenario with a curved map. Right: same scenario with a noisy sensor. (Color
figure online)

Adding Noisy Sensors. Verse supports scenarios with different sensor functions.
For example, the user can create a noisy sensor function that mimics a realistic
sensor with bounded noise. Such sensor functions are easily added to the scenario
using the set_sensor function.

Figure 6(right) shows exactly the same three-car scenario with a noisy sensor,
which adds ±0.5m noise to the perceived position of all other vehicles. Since
the sensed values of other agents only impacts the checking of the guards (and
hence the transitions) of the agents, Verse internally bloats the reachable set of
positions for the other agents by ±0.5 while checking guards. Compared with the
behavior of the same agent with no sensor noise (shown in yellow in Fig. 6(right)),
the sensor noise enlarges the region over which the transition can happen, causes
enlarged reachtubes for the red agent.

Plugging in Different Reachability Engines. With a little effort, Verse allows
users to plug in different reachability tools for the postCont computation. The
user will need to modify the interface of the reachability tool so that given a
set of initial states, a mode, and a non negative value δ, the reachability tool
can output the set of reachable states over a δ-period represented by a set of



360 Y. Li et al.

timed hyperrectangles. Currently, Verse implements computing postCont using
DryVR [14], NeuReach [35] and Mixed Monotone Decomposition [12]. A scenario
with two car agents in map M1 verified using NeuReach and DryVR is included
in the extended version of the paper [26].

Incremental Verification. We implemented an incremental verification algorithm
in Verse called verifyInc. This algorithm improves verify by caching and
reusing reachtubes, and can be effective when analyzing a sequence of slightly
different scenarios. The function verifyInc avoids re-computing postd,d′ and
postd,δ when constructing the execution tree by reusing earlier execution runs.
Experiments show that verifyInc reduces running time by 10x for two identi-
cal runs and 2x when the decision logic is slightly modified. (More details are
provided in the extended version of paper [26]). This exercise illustrates a usage
of Verse in creating alternative analysis algorithms.

Table 1 summarizes the running time of verifying all the examples in this
section. We additionally include three standard benchmarks: van-der-pol (Agent
V) [20], spacecraft rendezvous (Agent S) [20], and gearbox (Agent G) [2]. As
expected, the running times increase with the number of discrete mode transi-
tion. However, for complicated scenario with 7 agents and 37 transitions, the
verification can still finish in under 6 mins, which suggests some level of scala-
bility. The choice of reachability engine can also impact running time. For the
same scenario in rows 2, 3 and 10, 11, Verse with NeuReach2 as the reachability
engine takes more time than using DryVR as the reachability engine.

Table 1. Runtime for verifying examples in Sect. 5. Columns are: number of agents (#A), agent
type (A), map used (Map), reachability engine used (postCont), sensor type (NS), number of mode
transitions #TR, and the total run time (Rt). N/A for not available.

#A A Map postCont NS #Tr Rt (s) #A A Map postCont Noisy S #Tr Rt (s)

2 D M6 DryVR No 8 55.9 2 D M5 DryVR No 5 18.7
2 D M5 NeuReach No 5 1071.2 3 D M5 DryVR No 7 39.6
7 C M2 DryVR No 37 322.7 3 C M1 DryVR No 5 23.4
3 C M3 DryVR No 4 34.7 3 C M4 DryVR No 7 118.3
3 C M1 DryVR Yes 5 29.4 2 C M1 DryVR No 5 21.6
2 C M1 NeuReach No 5 914.9 1 V N/A DryVR N/A 1 0.33
1 S N/A DryVR N/A 3 2.3 1 G N/A DryVR N/A 3 67.14

6 Related Work

Automatic hybrid verification tools typically require the input model to be writ-
ten in a tool-specific language [10,13–15,17,25]. Libraries like JuliaReach [7]
2 Runtime for NeuReach includes training time.



Verse: A Python Library for Reasoning 361

Hylaa [5] and HyPro [8] share our motivation to reduce the usability barrier by
providing reachability analysis APIs for popular programming languages. Verse
is distinct in this family in that it supports creation and analysis of multi-agent
scenarios. The work in [33] also supports multiple agents, however, Verse sig-
nificantly improves usability with maps, scenarios and decision logics written in
Python.

Interactive theorem provers have been used for modeling and verification
of multi-agent and hybrid systems [16,19,27,29]. KeYmeraX [19] uses quantified
differential dynamic logic for specifying multi-agent scenarios and supports proof
search and user defined tactics. Isabelle/HOL [16], PVS [27], and Maude [29] have
also been used for limited classes of hybrid systems. These approaches are geared
for a different user segment in that they provide higher expressive and analytical
power to expert users. Verse is inspired by widely used tools for simulating multi-
agent scenarios [9,18,28,30,36]. While the models created in these tools can be
flexible and expressive, currently they are not amenable to formal verification.

7 Conclusions and Future Directions

In this paper, we presented the new open source Verse library for broadening
applications of hybrid system verification technologies to scenarios involving mul-
tiple interacting decision-making agents. There are several future directions for
Verse. Verse currently assumes all agents interact with each other only through
the sensor in the scenario and all agents share the same sensor. This restriction
could be relaxed to have different types of asymmetric sensors. Functions for
constructing and systematically sampling scenarios could be developed. Func-
tions for post-computation for white-box models by building connections with
existing tools [1,10,15] would be a natural next step. Those approaches could
obviously utilize the symmetry property of agent dynamics as in [32,34], but
beyond that, new types of symmetry reductions should be possible by exploiting
the map geometry.

References

1. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the Workshop on
Applied Verification for Continuous and Hybrid Systems (2015)

2. Althoff, M., et al.: Arch-comp20 category report: continuous and hybrid systems
with linear continuous dynamics. In: Frehse, G., Althoff, M. (eds.) 7th International
Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20),
ARCH20. EPiC Series in Computing, vol. 74, pp. 16–48. EasyChair (2020). https://
doi.org/10.29007/7dt2

3. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci.
138(1), 3–34 (1995)

4. Association for Standardization of Automation and Measuring Systems (ASAM):
Open dynamic road information for vehicle environment, August 2021. https://
www.asam.net/standards/detail/opendrive/

https://doi.org/10.29007/7dt2
https://doi.org/10.29007/7dt2
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/


362 Y. Li et al.

5. Bak, S., Duggirala, P.S.: HyLAA: a tool for computing simulation-equivalent reach-
ability for linear systems. In: Proceedings of the 20th International Conference on
Hybrid Systems: Computation and Control, pp. 173–178. ACM (2017)

6. Bak, S., Tran, H.D., Johnson, T.T.: Numerical verification of affine systems with up
to a billion dimensions. In: Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control, HSCC 2019, pp. 23–32. Association
for Computing Machinery, New York (2019)

7. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a
toolbox for set-based reachability. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pp. 39–44 (2019)

8. Ábrahám, E., Schupp, S., Chen, X., Kowalewski, S., Makhlouf, I., Sankara-
narayanan, S.: HyPro: a C++ library for the representation of state sets for the
reachability analysis of hybrid systems (2023)

9. Brittain, M., Alvarez, L.E., Breeden, K., Jessen, I.: AAM-Gym: artificial intelli-
gence testbed for advanced air mobility (2022)

10. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8_18

11. Chen, X., Sankaranarayanan, S.: Reachability analysis for cyber-physical systems:
are we there yet? In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA Formal
Methods, NFM 2022. LNCS, vol. 13260. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-06773-0_6

12. Coogan, S.: Mixed monotonicity for reachability and safety in dynamical systems.
In: 2020 59th IEEE Conference on Decision and Control (CDC), pp. 5074–5085
(2020)

13. Devonport, A., Khaled, M., Arcak, M., Zamani, M.: PIRK: scalable interval reach-
ability analysis for high-dimensional nonlinear systems. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12224, pp. 556–568. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53288-8_27

14. Fan, C., Qi, B., Mitra, S., Viswanathan, M.: DryVR: data-driven verification and
compositional reasoning for automotive systems. In: Majumdar, R., Kunčak, V.
(eds.) CAV 2017. LNCS, vol. 10426, pp. 441–461. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_22

15. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachabil-
ity analysis for nonlinear hybrid models with C2E2. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9779, pp. 531–538. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4_29

16. Foster, S., Huerta y Munive, J.J., Gleirscher, M., Struth, G.: Hybrid systems veri-
fication with Isabelle/HOL: simpler syntax, better models, faster proofs. In: Huis-
man, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 367–386.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-6_20

17. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

18. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation. In:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, pp. 63–78. Association for Computing
Machinery, New York (2019)

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-031-06773-0_6
https://doi.org/10.1007/978-3-031-06773-0_6
https://doi.org/10.1007/978-3-030-53288-8_27
https://doi.org/10.1007/978-3-030-53288-8_27
https://doi.org/10.1007/978-3-319-63387-9_22
https://doi.org/10.1007/978-3-319-63387-9_22
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-030-90870-6_20
https://doi.org/10.1007/978-3-642-22110-1_30


Verse: A Python Library for Reasoning 363

19. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6_36

20. Geretti, L., et al.: Arch-comp20 category report: continuous and hybrid systems
with nonlinear dynamics. In: Frehse, G., Althoff, M. (eds.) 7th International Work-
shop on Applied Verification of Continuous and Hybrid Systems (ARCH20). EPiC
Series in Computing, vol. 74, pp. 49–75. EasyChair (2020). https://doi.org/10.
29007/zkf6

21. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

22. Hoffmann, G.M., Tomlin, C.J., Montemerlo, M., Thrun, S.: Autonomous automo-
bile trajectory tracking for off-road driving: controller design, experimental valida-
tion and racing. In: 2007 American Control Conference, pp. 2296–2301 (2007)

23. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, pp. 169–178 (2019)

24. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O
Automata. Synthesis Lectures on Computer Science (2011). https://doi.org/10.
1007/978-3-031-02003-2. Morgan Claypool (November 2005), also available as
Technical Report MIT-LCS-TR-917, MIT

25. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

26. Li, Y., Zhu, H., Braught, K., Shen, K., Mitra, S.: Verse: a Python library for
reasoning about multi-agent hybrid system scenarios (2023)

27. Lim, H., Kaynar, D., Lynch, N., Mitra, S.: Translating timed I/O automata speci-
fications for theorem proving in PVS. In: Pettersson, P., Yi, W. (eds.) FORMATS
2005. LNCS, vol. 3829, pp. 17–31. Springer, Heidelberg (2005). https://doi.org/10.
1007/11603009_3

28. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE (2018)

29. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theoret. Comput. Sci. 285(2), 359–405 (2002). rewriting Logic
and its Applications

30. Jiang, M., et al.: GRAIC: a simulator framework for autonomous racing. https://
popgri.github.io/Race/ (2021)

31. Ray, R., Gurung, A., Das, B., Bartocci, E., Bogomolov, S., Grosu, R.: XSpeed:
accelerating reachability analysis on multi-core processors. In: Piterman, N. (ed.)
HVC 2015. LNCS, vol. 9434, pp. 3–18. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-26287-1_1

32. Sibai, H., Li, Y., Mitra, S.: SceneChecker: boosting scenario verification using sym-
metry abstractions. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol.
12759, pp. 580–594. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81685-8_28

33. Sibai, H., Mokhlesi, N., Fan, C., Mitra, S.: Multi-agent safety verification using
symmetry transformations. In: TACAS 2020. LNCS, vol. 12078, pp. 173–190.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45190-5_10

https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.29007/zkf6
https://doi.org/10.29007/zkf6
https://doi.org/10.1007/978-3-031-02003-2
https://doi.org/10.1007/978-3-031-02003-2
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/11603009_3
https://doi.org/10.1007/11603009_3
https://popgri.github.io/Race/
https://popgri.github.io/Race/
https://doi.org/10.1007/978-3-319-26287-1_1
https://doi.org/10.1007/978-3-319-26287-1_1
https://doi.org/10.1007/978-3-030-81685-8_28
https://doi.org/10.1007/978-3-030-81685-8_28
https://doi.org/10.1007/978-3-030-45190-5_10


364 Y. Li et al.

34. Sibai, H., Mokhlesi, N., Mitra, S.: Using symmetry transformations in equivariant
dynamical systems for their safety verification. In: Chen, Y.-F., Cheng, C.-H.,
Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 98–114. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31784-3_6

35. Sun, D., Mitra, S.: NeuReach: learning reachability functions from simulations. In:
TACAS 2022. LNCS, vol. 13243, pp. 322–337. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99524-9_17

36. Wu, C., Kreidieh, A., Parvate, K., Vinitsky, E., Bayen, A.M.: Flow: Architecture
and benchmarking for reinforcement learning in traffic control. arXiv:1710.05465
(2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-31784-3_6
https://doi.org/10.1007/978-3-030-99524-9_17
https://doi.org/10.1007/978-3-030-99524-9_17
http://arxiv.org/abs/1710.05465
http://creativecommons.org/licenses/by/4.0/

	Verse: A Python Library for Reasoning About Multi-agent Hybrid System Scenarios
	1 Introduction
	2 Overview of Verse
	3 Scenarios in Verse
	4 Verse Scenario to Hybrid Verification
	5 Experiments and Use Cases
	6 Related Work
	7 Conclusions and Future Directions
	References




