Parameterized Verification of Distributed Cyber-Physical Systems
An Aircraft Landing Protocol Case Study

Taylor Johnson and Sayan Mitra
University of Illinois at Urbana-Champaign

ICCPS 2012, CPSWeek, Beijing
Distributed air-traffic control protocol

- The Small Aircraft Transportation protocol (SATS) [Abbott et al. NASA Report 2002]

- Distributed traffic control for increasing general aviation access to small airports with minimal centralized infrastructure

- Features of the system/model
 - (Cyber) Location, sequence of agents
 - (Physical) Motion of agents
 - (Distributed) Ordering data-structure is spread across multiple aircrafts
Parameterized Systems and Verification

- **Goal:** Verify that SATS guarantees safety and progress even if **arbitrarily many aircraft participate in the protocol**

- **Parameterized verification**
 - For every instantiation of such a system, verify some property P regardless of the number of agents
 - \(\forall N \in \mathbb{N}. \mathcal{A}(N) \triangleq \mathcal{A}_1 \parallel \mathcal{A}_2 \parallel \cdots \parallel \mathcal{A}_N \models P(N) \)
 - Example: \(P(N): \forall i, j \in [N], \ x_i - x_j > S \)
 - No two aircraft ever collide, no two processes enter a critical section simultaneously

- **Parameterized systems are all around ...**
 - Aircraft and vehicles in distributed air traffic control
 - Collaborative Apps on Mobile phones, e.g., Geocasting and Sensing
 - Robotic swarms (platooning, flocking)
 - Networked medical devices
Related Work: Automatic parameterized verification

- **Finite-state automata:** Undecidable in general [Apt and Kozen, 1986]
- **Timed automata**
 - Decidable with a single real-valued clock, finite number of integer clocks [Abdulla et al. 2001-04]
 - Undecidable with two or more real-valued clocks, urgency, universal guards [Abdulla et al. 2001-07]
- **Model checking:**
 - Counter abstraction [Delzanno 2000], Environment abstraction [Clarke, Talupur, and Veith 2006], Network invariants [Wolper, Lovinfosse, 1990], Small model theorems [Pnueli et al. 2001] [Johnson & Mitra, FORTE 2012]
- **Theorem-prover based applications**
 - Adaptive cruise control [Loos, Platzer, et al. 2011]
 - Fischer’s mutual exclusion [Dutertre and Sorea 2004]
- **MCMT:** Tool for backward reachability algorithm [Ghilardi et al. IJCAR 2008], Timed automata [Carioni et al. 2010]
SATS Overview

- Automaton model of each aircraft \(A_i \)
 - Region of airspace
 - Position within region \((x_i) \)
 - Sequence number \((s_i) \)
 - Miss direction \((m_i) \)

- Central coordinator assigns unique sequence numbers

- Aircraft coordinate with one another to make landing attempts while ensuring separation assurance

- Communication modeled as synchronized transitions that atomically read/write the state of two aircrafts (and coordinator)
Hybrid Automaton Model for an aircraft in SATS

LEZ R

Hold 3k R

Hold 2k R

Base R

$\dot{x}_i = [a, b]$

$x_i = 0$

$(\text{next}_{i} = \bot) \lor (\text{next}_{i} = j \land x_j \geq S)$

$m_i = R; \text{next}_i = \text{tail}; \text{tail}:= i$

x_i \geq L_F \land m_i = R$

$x_i = 0$

Final

$\dot{x}_i = [a, b]$

$x_i = 0$

$x_i \geq L_{FINAL}$

Runway

LEZ L

Hold 3k L

Hold 2k L

Base L

$\dot{x}_i = [a, b]$

$x_i = 0$

$m_i = L; \text{next}_i = \text{tail}; \text{tail}:= i$

MAZ R

$\dot{x}_i = [a, b]$

$x_i \geq L_B$

$\dot{x}_i = [a, b]$

$\dot{x}_i = [a, b]$

MAZ L
Direct verification results

| SATS Constant velocity | • Automatic translation from Simulink to UPPAAL
|• Verification of properties using UPPAAL
(4 aircrafts 10 mins; 5 aircrafts ~ 1 hour) |
| SATS Simplified | • Automatic translation from Simulink to HyTech for a simpler model with no sequences
• Verification of properties using HyTech (4 aircrafts, 155 sec) |

Parameterized verification: Symbolic computation for entire family of systems:
Symbolic representation of states, transitions, unsafe sets
Variables and Symbolic States

Variables

• \(q_i \) : \{ Fly, H3KL, BaseL, ..., Runway\}
 Control location for \(A_i \)

• \(x_i \) : \(\mathbb{R} \)
 Position of \(A_i \) within \(q_i \)

• \(\text{next}_i \) : \(\mathbb{N}_\perp \)
 Sequence number

• \(m_i \) : \{Left, Right\}
 Miss side

• \(\text{tail} \) : \(\mathbb{N}_\perp \)
 Global counter airport module

Parametric predicates

• **General:** \(\phi_I(N) \triangleq \forall i, j, k, ... \in [N]. \psi_I \), where \(\psi_I \) is a propositional formula

• **Initial condition:** \(\text{Init}(N) \triangleq \forall i \in [N]. q_i = \text{Fly} \)

• **Separation:** \(\text{Sep}(N) \triangleq \forall i, j \in [N], i \neq j \wedge q_i, q_j \in \{\text{Base, Runway, Missed}\} \wedge (\text{next}_i = j) \Rightarrow x_j - x_i \geq S \)

• **Unsafe (negation):** \(\exists i, j \in [N], (i \neq j \wedge q_i, q_j \in \{\text{Base, Runway, Missed}\} \wedge (\text{next}_i = j) \wedge x_j - x_i < S \)

• **General:** \(\phi_b \triangleq \exists i, j, k, ... \in [N]. \psi_b \) for some propositional formula \(\psi_b \) over the variables of \(A_i \)
Discrete Transitions

• For each location pair a to b the transition
 \[T(N, Fly, Hold3L) \triangleq \exists i \in [N] \]
 • \(q_i = Fly \land \)
 • \(q_i' = Hold3L \land next_i' = tail \land tail' = i \land \)
 • \(\forall j \in [N]: j \neq i \Rightarrow next_j' = next_j \land q_j' = q_j \)

• \(Trajs(N) \): \(\exists t > 0, \forall j \in [N]: \)
 - \((q_i = Base \Rightarrow (\forall t' \leq t: x_j + t' = B \Rightarrow t' = t) \land \)
 - \((q_i = Final \Rightarrow (\forall t' \leq t: x_j + t' = L \Rightarrow t' = t) \land \)
 - \(... \land \)
 - \(x_j' = x_j + t \)

• \(T(x, x') = \)
 \[T(N, Fly, Hold3L) \lor T(N, Fly, Hold3R) \lor \]
 \[T(N, Hold3L, Hold2L) \lor ... \lor Trajs(N) \]
Reachability Algorithm

BR = ¬S // S: property

While

If BR ∧ Init is SAT then return UNSAFE

// Safety check

Else BR = BR ∨ ∃x': T(x, x') ∧ BR(x')

P' = P ∨ BR

If ¬(P' ⟹ P) is UNSAT then return SAFE

// Fixpoint check

Else P = P' repeat

Every inductive invariant that is proved is conjuncted to the next invariant for strengthening
When is termination guaranteed?

- Depends on the format of the safety property
- If it is of the form $\exists i \in [N]: P(i)$ and Pre computation is also of the form $\exists i \in [N]: Q(i)$
- And, there is only discrete interaction amongst A_i then we can reach a fixpoint
- For SATS, several properties bound the number of aircrafts that can actually be present in the system
Verification Methodology

• Model Checker Modulo Theories (MCMT)
 – Performs satisfiability checks of formulas using the satisfiability modulo theories (SMT) solver Yices
 – Supports real parameters (needed for timed dynamics)

• Provide a list of properties
 – Main property is separation assurance
 – Python script calls MCMT to prove a property from this list
 – If the property is established, script assumes this property in subsequent calls to MCMT, then tries another property in the list
Properties and Runtimes

<table>
<thead>
<tr>
<th>Property</th>
<th>Runtime (s)</th>
<th>Memory (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No more than four aircraft in system</td>
<td>25.95</td>
<td>10</td>
</tr>
<tr>
<td>No two aircrafts violate separation</td>
<td>283.08</td>
<td>32</td>
</tr>
<tr>
<td>No more than two aircraft on the left (right)</td>
<td>24.50</td>
<td>5</td>
</tr>
<tr>
<td>At most one aircraft in each holding zone</td>
<td>0.81</td>
<td>4</td>
</tr>
<tr>
<td>No more than two aircraft on a missed approach on the left (right)</td>
<td>491.61</td>
<td>274</td>
</tr>
</tbody>
</table>
Conclusions & Ongoing Work

- **SATS**: A Benchmark for distributed cyber-physical system
- Our modeling framework: Networks of Hybrid Automata with discrete (atomic) interactions
- Verification: Parameterized backward reachability
 - Derived bounds aid termination
- Challenges: Termination & Liveness in parameterized systems
- Ongoing work:
 - Small Model Results [Forte/FMOODs paper to appear]
 - Z3-based tool implementation
 - Application to mobile peer-to-peer applications
Questions?
\mathcal{A}_i: Aircraft Hybrid Automaton
Example: Fischer’s Protocol

- Timed mutual exclusion protocol
 - 4 states: initial, waiting, trying, critical section
 - 1 real-valued clock per process
 - 1 globally shared (atomic) variable, v, ranging over process ids
 - Process ids: \{1, \ldots, n\}
 - Safety property: at most one process is in critical section

\[
\begin{align*}
\text{init} & : v := 0 \\
\text{wait} & : v \neq i \\
\text{try} & : t_i < 1 \\
\text{cs} & : v = i \land t_i > 1 \\
\end{align*}
\]
Termination Example

- Parameterized finite state machines

\[
\phi_B \triangleq \exists z. q_z = b_0 \text{ and } \\
\phi_I \triangleq \forall z. q_z = b_2,
\]

\[
\tau_{b_1 \rightarrow b_0}(q, q') \triangleq \exists z. (q_z = b_1 \land q' = \lambda j. (\text{if } j = z \text{ then } b_0 \text{ else } q_j)), \\
\tau_{b_1 \rightarrow b_1}(q, q') \triangleq \exists z. (q_z = b_1 \land q' = \lambda j. (\text{if } j = z \text{ then } b_1 \text{ else } q_j)), \\
\tau_{b_2 \rightarrow b_2}(q, q') \triangleq \exists z. (q_z = b_2 \land q' = \lambda j. (\text{if } j = z \text{ then } b_2 \text{ else } q_j)), \\
\tau(q, q') \triangleq \tau_{b_1 \rightarrow b_0}(q, q') \lor \tau_{b_1 \rightarrow b_1}(q, q') \lor \tau_{b_2 \rightarrow b_2}(q, q').
\]
Termination Example (cont)

<table>
<thead>
<tr>
<th>k</th>
<th>ϕ_k</th>
<th>ρ_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\exists z.q_z = b_0$</td>
<td>$\exists z.q_z = b_0$</td>
</tr>
</tbody>
</table>
| 1 | $\text{Pre}(\exists z.q_z = b_0) \equiv \exists q' \tau(q, q') \land \phi_0(q') \equiv \exists q' (\exists z_1.q[z_1] = b_1 \land q' = \lambda j.
 (if } j = z_1 \Rightarrow b_0 \text{ else } q_j) \land \exists z_2.q[z_2]' = b_0) \equiv \exists z.q_z = b_1$ | $\exists z.q_z = b_0 \lor \exists z.q_z = b_1$ |
| 2 | $\text{Pre}(\exists z.q_z = b_1) \equiv \exists q' \tau(q, q') \land \phi_1(q') \equiv \exists q' (\exists z_1.q[z_1] = b_1 \land q' = \lambda j.
 (if } j = z_1 \Rightarrow b_1 \text{ else } q_j) \land \exists z_2.q[z_2]' = b_1) \equiv \exists z.q_z = b_1$ | $\exists z.q_z = b_0 \lor \exists z.q_z = b_1$ |

<table>
<thead>
<tr>
<th>k</th>
<th>$\rho_k \land \phi_I$</th>
<th>$\neg (\rho_k \Rightarrow \rho_{k-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\exists z.q_z = b_0 \land \forall z.q_z = b_2$</td>
<td>undefined</td>
</tr>
<tr>
<td>1</td>
<td>$(\exists z.q_z = b_0 \lor \exists z.q_z = b_1) \land \forall z.q_z = b_2 \equiv \text{unsatisfiable}$</td>
<td>$(\exists z.q_z = b_0 \land \forall z.q_z \neq b_0) \land \forall (\exists z.q_z = b_1 \land \forall z.q_z \neq b_0) \equiv \text{satisfiable}$</td>
</tr>
<tr>
<td>2</td>
<td>$(\exists z.q_z = b_0 \lor \exists z.q_z = b_1) \land \forall z.q_z = b_2 \equiv \text{unsatisfiable}$</td>
<td>$\neg (\exists z.q_z = b_0 \lor \exists z.q_z = b_1 \Rightarrow \exists z.q_z = b_0 \lor \exists z.q_z = b_1) \equiv \text{unsatisfiable}$</td>
</tr>
</tbody>
</table>