Inductive controller synthesis for piecewise linear systems with SMT

Zhenqi Huang¹, Yu Wang¹
Sayan Mitra¹, Geir Dullerud¹, and Swarat Chaudhuri²

¹Coordinated Science Lab
University of Illinois at Urbana-Champaign
²Department of Computer Science
Rice University
Typical synthesis problem: reach-avoid

Reach-avoid problem is defined by:

- Controller class C such that $g \in C$
- Initial set $Init$ s.t. $x_0 \in Init$
- Goal set $Goal$ s.t. $x_T \in Goal$ for some T
- Safe set $Safe$ s.t. $x_t \in Safe$ for all $t \leq T$
Controller synthesis algorithm

given a system model, safe and goal, find control such that all behaviors are safe and reach goal

• yes (controller strategy g)

• no (impossibility certificate “no controller exists”)
Existing reach-avoid synthesis

- **Constraint model predictive control (e.g., [Bemporad02])**
 - Cast the reach-avoid problem into a constraint optimization
 - Apply receding-horizon strategy
 - **Challenges:** soundness, completeness, nested constraints

- **Finite automata abstraction (e.g., [Tabuada06])**
 - Construct finite automata of the dynamical system and the reach-avoid property
 - Model check the product automata
 - **Challenges:** completeness, scalability
SMT-based synthesis: overview

• First order logic formula have quantifiers over variables
 • Example: $\exists y \forall x. (x^2 \leq y + 1) \Rightarrow (\sin x > \cos(\log y))$

• Satisfiability modulo theories (SMT) solvers
 • Finding satisfying solutions for first order logic formula, or
 • Prove no solution satisfies the formula
 • E.g. Z3, CVC4, VeriT, dReal
 • Scales up to hundreds of real variables & thousands of constraints for quantifier-free linear formula

• SMT-based synthesis: generate boolean constraints for a correct controller using the problem specifications and directly solve using SMT solvers.
Naïve SMT synthesis: open-loop control

Consider $C = \{[0, \ldots, T] \rightarrow U\}$ for open-loop control with a single initial state $Init = \{x_0\}$

- $\exists u_0, u_1, \ldots, u_T:$
 \[(\land_{t \leq T} x(t) \in safe) \land x(T) \in Goal\]

with $x(t) = A^t x_0 + \sum_{s=0}^{t-1} A^{t-s-1} Bu_s$
Application: helicopter autopilot

Autonomous helicopter
 • 16 dimensions, 4 inputs

Advantage
 • Method is automatics, can be used by users with limited experience in control

Limitations
 • Performance deteriorates with larger disturbances
 • Relies on unrolling the system dynamics with disturbance for bounded time---does not scale beyond linear, short horizon

<table>
<thead>
<tr>
<th>T</th>
<th>φ</th>
<th>Result</th>
<th>R.time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>402</td>
<td>Sat</td>
<td>24.5</td>
</tr>
<tr>
<td>12</td>
<td>338</td>
<td>Sat</td>
<td>60.6</td>
</tr>
<tr>
<td>15</td>
<td>576</td>
<td>Sat</td>
<td>158.8</td>
</tr>
<tr>
<td>18</td>
<td>640</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Idea of inductive synthesis: (a) state feedback

- **Lookup table controller:**
 - P: cover of the state space, sensor quantization or heuristic
 - $C = \{ P \rightarrow U \}$
 - We denote $\text{post}(p, g)$ as the set of partition reached in one-step from a partition p using controller g.

![Diagram of state space with init and goal markers](image-url)
Idea of inductive synthesis: (b) two correctness certificates

- Safety certificate
 - An invariant set \(\text{Inv} \) that is reachable from \(\text{init} \)

- Progress certificate
 - A ranking function \(\text{rank} \) like a Lyapunov function
Idea of inductive synthesis:
(c) inductive synthesis rules

Find $g: P \rightarrow U$, rank: $P \rightarrow \mathbb{N}$, $Inv: P \rightarrow \{0,1\}$ such that:

- (initial condition) $Init \subseteq Inv$
- (control invariant) $post(Inv, g) \subseteq Inv$
- (safe) $Inv \subseteq safe$
- (goal) $p \subseteq goal \iff rank(p) = 0$
- (progress) $rank(p) > 0 \Rightarrow rank(p) > \max\{\text{rank}(\text{post}^k(p, g))\}$
Strengthening & relaxation of rules

The post operator is generally hard to symbolically compute, but can be over-/under-approximated

- replace $post$ by over-approximated $post$, we get a set of strengthened rules
- replace $post$ by under-approximated $post$, we get a set of relaxed rules

- If the strengthened rules are solved by control g with certificates Inv, rank, so is the original rules.

- If the relaxed rules does not have a solution, so is the original rules.

- If the relaxed rules are solved by control g with certificates Inv, rank, but the strengthened rules does not have a solution, the set Inv can be used to guide refinement of $post$
 - Refine in Inv helps derive progress proof, and
 - Refine in Inv^C helps derive safety proof.
Soundness & relative completeness

Given controller class C and ranking function templates R, a problem M is robust if there exists $\epsilon > 0$:

1. exists $g \in C, V \in R$ such that for any problem M' whose dynamic is ϵ-close to M, the g,V solves the inductive rules for M', OR
2. for none of the problems M' that are ϵ-close to M, have solutions to the synthesis problem with any $g \in C, V \in R$

Theorem. If synthesis problem M is robust, then there exists a sufficiently accurate computation of post to

(a) either find control g and proof rank, Inv or

(b) give a proof that there exists no such controller in C, R.
Application: path planning

implemented using CVC4 SMT solver

4D nonlinear vehicle navigation with noise and obstacles

\textbf{P}: regions in state space

\textit{rank}: p \rightarrow \mathbb{N}

- 768 cells, 3072 real-valued/boolean variables, solved in less than 10 minutes
Summary and outlook

- We propose inductive controller synthesis algorithm using SMT solvers
- Idea: synthesize an invariant set and a ranking function serving as the correctness proofs together with the controller actions
- Algorithms can also give impossibility certificates
- Ongoing and Future work:
 - Connect synthesis with our high-level programming language of distributed robots [Lin et al. LCTES 2015]
 - Synthesis of attacks on power networks