Translating Timed I/O Automata to PVS

Hongping Lim, Dilsun Kaynar, Nancy Lynch and Sayan Mitra

Theory of Distributed Systems Group (TDS)
Computer Science and AI Lab, MIT

FORMATS 2005, Uppsala, Sweden
Project Goals

- Develop formal framework for modeling and reasoning about complex, interacting systems
 - Timing-dependent behavior: schedules, deadlines
 - Hybrid behavior: continuous interactions
 - Probabilistic behavior
- Build language for specifying formal models
 - Extend of IOA language
- Build Tool support based on the specification language
 - Interface to Theorem Provers
 - Simulator
 - Model checking
Flavors of I/O automaton models

- Infinite state automata with external interface, abstraction, composition
- Basic IOA (synchronous distributed algorithms)
 - Sequential order of actions, no timing information
 - Interaction through shared actions
- TIOA (timing based systems, hybrid systems || environment)
 - Actions and trajectories
 - Trajectories may describe complex continuous dynamics
 - No continuous interaction between components
- HIOA (embedded systems, software + physical processes)
 - Continuous interactions through shared variables
- PIOA, PTIOA, PHIOA (security protocols, stochastic hybrid systems)
 - Probabilistic transitions, trajectories, …
Outline

- Introduction
- TIOA model and language
- Translation to PVS
- Examples
TIOA model

Timed I/O Automaton [Kaynar,Lynch,Segala,Vaandrager]
- State variables X (+ input/output variables = HIOA)
- Start states Θ
- Actions A, partitioned into input, output, and internal subsets
- Discrete transitions D, (x,a,x')
- Trajectories T, τ maps interval of time to variable values

- Executions $\alpha = \tau_0 a_1 \tau_1 a_2 \tau_2 \ldots a_n \tau_n$
- Invariant properties, proof by induction

- Traces
- Simulation relations: sufficient conditions for $\text{traces}(A) \subseteq \text{traces}(B)$
- Composition, $A || B$

$\text{traces}(A) \subseteq \text{traces}(B) \Rightarrow \text{traces}(A || C) \subseteq \text{traces}(B || C)$
Two task example

- **Model & Language**
 - PVS Translation

- **Examples**

International Conference on Formal Modelling and Analysis of Timed Systems 2005
Variables

- \(\textit{count, flag, t}\)
- \(\textit{u_reset, l_reset}\)
- \(\textit{u_count, l_count}\)

+ action

- Precondition:
 - not \(\textit{flag}\) and \(t \geq l_count\)
- Effect:
 - \(\textit{count}++\)
 - \(\textit{l_count} = t + a_1\)
 - \(\textit{u_count} = t + a_2\)

reset action

- Precondition:
 - not \(\textit{flag}\) and \(t \geq l_reset\)
- Effect:
 - \(\textit{flag} = \text{true}\)

trajdef

- Evolve: \(d(t) = 1\)
- Stop when: \(t = u_count\ or\ t = u_reset\)
Upper bound for stop

How late can it **stop**?

\[b_2 + a_2 + \frac{b_2 a_2}{a_1} \]

How early?

If \(a_2 \geq b_1 \) then \(a_1 \) else \(\min(b_1, a_1) + \frac{(b_1 - a_1)a_1}{a_2} \)
Case studies: Two task example

- Abstract automaton B with one action stop
 - $u_{\text{stop}} = b_2 + a_2 + \frac{b_2a_2}{a_1}$
 - $l_{\text{stop}} = \text{if } a_2 \geq b_1 \text{ then } a_1 \text{ else}$
 \[\min(b_1, a_1) + \frac{(b_1 - a_1)a_1}{a_2} \]

- Prove trace inclusion (time bounds for stop) with simulation relations

- Prove forward simulation $R \subseteq Q_A \times Q_B$
Simulation Relation

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Model & Language</th>
<th>PVS Translation</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>🗳 Requires creativity/insight to come up with the right R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>🗳 Proof by induction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. There are related start states</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Every action/trajectory of A can be emulated by an execution fragment of B with the same trace.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>🗳 Use PVS prover [SRI] for proving interactively</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>🗳 Strategies set up the induction and case analysis automatically</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>🗳 Nonlinear real inequalities handled by Field and Manip strategy packages [Muñoz, deVito]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$\sim \text{flag} \lor l_\text{count} \leq u_\text{reset} \rightarrow u_\text{stop} \geq u_\text{reset} + a_2 (\text{count} + 2 + (u_\text{reset} - l_\text{count})/a_1)$$

$$\text{flag} \lor l_\text{count} > u_\text{reset} \rightarrow u_\text{stop} \geq u_\text{count} + a_2 \text{count}$$

$$\sim \text{flag} \land u_\text{count} < l_\text{reset} \rightarrow l_\text{stop} \leq \min(l_\text{reset}, l_\text{count}) + a_1 (\text{count} + (l_\text{reset} - u_\text{count})/a_2)$$

$$\text{flag} \lor u_\text{count} \geq l_\text{reset} \rightarrow l_\text{stop} \leq l_\text{count} + a_1 \text{count}$$
Translation to PVS

- Stylized proofs lead to partial automation [Archer, Mitra 05]
- Proof management (E.g., ABD implementation [Chockler, Lynch, Mitra, Tauber, DISC’05])
- Rechecking proofs after making changes to spec
- Generation of human readable proofs

- Rewrite TIOA specs for the theorem prover! Different language and style.

- Why not specify automata directly in PVS?
 - TIOA provides structures for natural description of automata
 - Programs for effects as opposed to functions or relations
 - Differential equations and stopping conditions for trajectories
 - Other TIOA tools
States and Actions

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Model & Language</th>
<th>PVS Translation</th>
<th>Examples</th>
</tr>
</thead>
</table>

- **TIOA**
 - States variables →
 - Initial state →
 - Actions →
 - Preconditions →
 - Effects →
 - Trajdefs →

- **PVS**
 - tuple of variables
 - predicate on state variables
 - new datatype called *actions*
 - predicates on state variables, action parameters, automaton parameters
 - …
 - …
Translating action effects

- TIOA effects are nondeterministic, e.g.,
 \[\text{plus_something}(): \text{effect } x := x + \text{choose } [1,5]; \]

- TIOA effects are programs with operational semantics:
 \[
 x := x + 5; \ y := 2.x; \ldots
 \]

- We want the PVS effects to be functions:
 - \(\text{plus}(k \in [1,5]): x' := x + k \)
 - Substitution:
 \[
 x' = x + 5; \ y' = 2 (x + 5)
 \]
 - PVS assignments:
 \[
 s' = \text{LET } s := s \text{ WITH } [x := x(s) + 5] \text{ in}
 \]
 \[
 \text{LET } s := s \text{ WITH } [y := 2 \times x(s)] \text{ in } s
 \]
Trajdef \rightarrow time_elapse action

- Trajdef
- Evolve: $d(x) = c$
- Stop when: $x \in D$

- PVS action
- time_elapse($t: \mathbb{R}^0$, $\tau: [0,t] \rightarrow \mathbb{R}^2$)
- Enabled if
 - for all $t_1 \in [0,t]$,
 - If $\tau(t_1) \in D$ then $t_1 = t$
 - $\tau(t_1) = x + c \cdot t_1$
- Effect
 - $s' = \tau(t)$

International Conference on Formal Modelling and Analysis of Timed Systems 2005
Works for general *trajdefs*

- **Trajdef**
- **Evolve:** \(d(x) = cx \)
- **Stop when:** \(x \in D \)

- **PVS action**
- **time_elapse** \((dt:R^{\geq 0}, \tau: [0,t] \rightarrow R^2)\)
- Enabled at s If
 - for all \(t_1 \in [0,t], \)
 - If \(\tau(t_1) \in D \) then \(t_1 = t \)
 - \(\tau(t_1) = x \cdot e^{ct_1} \)
- **Effect**
 - \(s' = \tau(t) \)
Case Studies
Fischer’s Mutual Exclusion Algorithm

- N processes, each go through *try, test, etc.*, to get to *critical*
- Transitions determined by deadlines
- Single TIOA written as the composition of N automata
- Safety property: no two processes are *critical* simultaneously

- Automata and properties translated to PVS
- Invariant proved using induction
Small Aircraft Transportation System (SATS) [Muñoz, NASA]

- Discrete model: airport space partitioned into several logical zones
- Each zones represented by a queue
- Transitions represent aircrafts moving from one zone to another
- Various constraints on transitions

Safety property: upper bound on the number of aircrafts in each zone

TIOA description of system

- Special operators declared in TIOA and defined in PVS, e.g. recursive functions

Translated to PVS

Properties written directly in PVS and proved
Ongoing: ABD

- ABD atomic register implementation
 - Read and write quorums for 2 phase reads and writes
 - Partial functions & graphs

- Proof of correctness using an abstract Partial Order automaton
- Simulation proof, ABD implements PO-automaton

- Directly coded in PVS
Conclusion

- Translator is part of TIOA toolkit, implemented in Java

- Future directions:
 - Extend translator
 - systems with linear dynamics
 - composed TIOAs
 - Develop new PVS strategies
 - New case studies
 - Linear hybrid systems
 - Atomic registers implementations
 - Continuous SATS