proving approximate implementations

sayan mitra
mitras@ist.caltech.edu
postdoctoral scholar

CENTER FOR MATHEMATICS OF INFORMATION
CALIFORNIA INSTITUTE OF TECHNOLOGY

CMI retreat 2007
implementation

B

send

[3, 10]

done

fail

done

nack

ack

nack

tx
implementation

B:

A: send

send

[3, 10]

fail
done

send

A:

B:

[3, 10]

fail
done

send
implementation

B

send → [3, 10] → done

A

send → tx → [3, 4] → nack → ack → done
implementation

- **B**
 - send
 - [3, 10]
 - done

- **A**
 - send
 - tx
 - [3, 4]
 - nack
 - tx
 - [3, 4]
 - nack
 - ack
 - done
implementation

\[Traces_B = \{\text{send } [3, 10] (\text{done}|\text{fail})\} \]
T races_{B} = \{send [3, 10] (done|fail)\}

T races_{A} = \{send [3, 4] done\} \cup \{send [6, 8] (done|fail)\}
Traces_B = \{send [3, 10] (done|fail)\}

Traces_A = \{send [3, 4] \text{done}\} \cup \{send [6, 8] (done|fail)\}

does A implement B?
implementation

\[\text{Traces}_B = \{ \text{send} [3, 10] \text{ (done|fail)} \} \]

\[\text{Traces}_A = \{ \text{send} [3, 4] \text{ done} \} \cup \{ \text{send} [6, 8] \text{ (done|fail)} \} \]

does \(A \) implement \(B \)?

\[\text{Traces}_A \subseteq \text{Traces}_B? \]
existence of simulation relation $\mathcal{R} \subseteq Q_A \times Q_B$ implies $\text{Traces}_A \subseteq \text{Traces}_B$
approximate implementations

exact implementation
 - based on equality of traces

\[\delta \text{-implements } B \text{ if for every trace of } A \text{ there is a trace of } B \text{ within } \delta \]

forces nondeterminism in deterministic, quantified abstractions
approximate implementations

exact implementation

- based on equality of traces
- not robust with respect to perturbations
approximate implementations

exact implementation

- based on equality of traces
- not robust with respect to perturbations
- forces nondeterminism in abstractions
approximate implementations

exact implementation

► based on equality of traces
► not robust with respect to perturbations
► forces nondeterminism in abstractions

approximate implementation

► based on similarity of traces
approximate implementations

exact implementation
- based on equality of traces
- not robust with respect to perturbations
- forces non-determinism in abstractions

approximate implementation
- based on similarity of traces
- $A \delta$-implements B if for every trace of A there is a trace of B within δ
approximate implementations

exact implementation
- based on equality of traces
- not robust with respect to perturbations
- forces nondeterminism in abstractions

approximate implementation
- based on similarity of traces
- $A \delta$-implements B if for every trace of A there is a trace of B within δ
- deterministic, quantified abstractions
probabilistic automata

captures probabilistic and nondeterministic uncertainties
probabilistic automata
captures probabilistic and nondeterministic uncertainties

\[A = (Q, \nu, Act, D) \]
- countable set of states \(Q \)
- initial distribution on states \(\nu \)
- countable set of actions \(Act = Ext \cup Int \)
- set of \((q, a, \mu) \) probabilistic transitions \(D \)
probabilistic automata

captures probabilistic and nondeterministic uncertainties

\[A = (Q, \nu, \text{Act}, D) \]

- countable set of states \(Q \)
- initial distribution on states \(\nu \)
- countable set of actions \(\text{Act} = \text{Ext} \cup \text{Int} \)

set of \((q, a, \mu)\) probabilistic transitions \(D \)

assumption
given a state \(q \) and an action \(a \) there is at most one transition \(q \xrightarrow{a} \mu \)
resolution of nondeterminism

- a schedule ρ is a sequence of actions
- ρ defines a probability distribution $\mu_\rho \in \mathbb{P}(\text{Paths}_A)$
trace distributions

for $\rho = \perp$

$\mu_{\rho}(1) = 1$
trace distributions

for $\rho = b$

$\mu_\rho(1) = 1$
trace distributions

for $\rho = b, a$

- $\mu_\rho(1 \ a \ 2) = \frac{1}{2}$
- $\mu_\rho(1 \ a \ 3) = \frac{1}{2}$
trace distributions

for $\rho = b, a, b$

- $\mu_\rho(1 \ a \ 2) = \frac{1}{2}$
- $\mu_\rho(1 \ a \ 3 \ b \ 2) = \frac{1}{6}$
- $\mu_\rho(1 \ a \ 3 \ b \ 3) = \frac{1}{3}$
trace distributions

for $\rho = b, a, b, c$

- $\mu_\rho(1 \ a \ 2 \ c \ 1) = \frac{1}{2}$
- $\mu_\rho(1 \ a \ 3 \ b \ 2 \ c \ 1) = \frac{1}{6}$
- $\mu_\rho(1 \ a \ 3 \ b \ 3) = \frac{1}{3}$
trace distributions

for $\rho = b, a, b, c$

- $\mu_\rho(1 a 2 c 1) = \frac{1}{2}$
- $\mu_\rho(1 a 3 b 2 c 1) = \frac{1}{6}$
- $\mu_\rho(1 a 3 b 3) = \frac{1}{3}$

trace distribution for ρ

- $\eta_\rho(a c) = \frac{2}{3}$
- $\eta_\rho(a) = \frac{1}{3}$
exact implementation for probabilistic automata

- a schedule ρ is a sequence of actions
- ρ defines a probability distribution $\mu_\rho \in \mathbb{P}(\text{Paths}_A)$
- ρ defines a probability distribution $\eta_\rho \in \mathbb{P}(\text{Ext}^*)$
- Tdists_A: set of all trace distributions for A
exact implementation for probabilistic automata

- a schedule ρ is a sequence of actions
- ρ defines a probability distribution $\mu_\rho \in \mathbb{P}(\text{Paths}_A)$
- ρ defines a probability distribution $\eta_\rho \in \mathbb{P}(\text{Ext}^*)$
- Tdists_A: set of all trace distributions for A

Definition

A implements B is $\text{Tdists}_A \subseteq \text{Tdists}_B$.
fragility of exact implementation
fragility of exact implementation

no schedule ρ' for B gives $\eta'_{\rho}(a \ c) = \frac{2}{3}$ and $\eta'_{\rho}(a) = \frac{1}{3}$
fragility of exact implementation

no schedule ρ' for B gives $\eta'_\rho(a\ c) = \frac{2}{3}$ and $\eta'_\rho(a) = \frac{1}{3}$

$T_{\text{dists}}_B \not\subseteq T_{\text{dists}}_A$
fragility of exact implementation

no schedule ρ' for B gives $\eta'_\rho(a, c) = \frac{2}{3}$ and $\eta'_\rho(a) = \frac{1}{3}$

$T_{dists}_B \not\subseteq T_{dists}_A$

we cannot say anything relating the behavior of A and B
metric on trace distributions

Definition
uniform metric on trace distributions, \(\eta_1, \eta_2 \in \mathbb{P}(\text{Ext}^*) \)

\[
d(\eta_1, \eta_2) = \sup_{\beta \in \text{Ext}^*} |\eta_1(\beta) - \eta_2(\beta)|.
\]
metric on trace distributions

Definition
uniform metric on trace distributions, \(\eta_1, \eta_2 \in \mathbb{P}(\text{Ext}^*) \)

\[
d(\eta_1, \eta_2) = \sup_{\beta \in \text{Ext}^*} |\eta_1(\beta) - \eta_2(\beta)|.
\]

Definition
A \(\delta \)-implements \(B \) if for every \(\eta_1 \in \text{Tdists}_A \) there exists \(\eta_2 \in \text{Tdists}_B \) such that \(d(\eta_1, \eta_2) \leq \delta \).
metric on trace distributions

Definition
uniform metric on trace distributions, $\eta_1, \eta_2 \in \mathbb{P}(Ext^*)$

$$d(\eta_1, \eta_2) = \sup_{\beta \in Ext^*} |\eta_1(\beta) - \eta_2(\beta)|.$$

Definition
A δ-implements B if for every $\eta_1 \in Tdists_A$ there exists $\eta_2 \in Tdists_B$ such that $d(\eta_1, \eta_2) \leq \delta$.

how to prove δ-implementations?
strong approximate simulations

\[\phi : \mathbb{P}(Paths_A) \times \mathbb{P}(Paths_B) \rightarrow \mathbb{R}^+ \text{ is an } (\epsilon, \delta)\text{-strong approximate simulation if} \]

\[\phi (\mu_A^0, \mu_B^0) \leq \epsilon \Rightarrow \phi (\mu_A', \mu_B') \leq \epsilon \]

\[\text{implies } d(\text{tdist}(\mu_A), \text{tdist}(\mu_B)) \leq \delta. \]
strong approximate simulations

\(\phi : \mathbb{P}(\text{Paths}_A) \times \mathbb{P}(\text{Paths}_B) \to \mathbb{R}^+ \) is an \((\epsilon, \delta)\)-strong approximate simulation if

\[
\text{START } \phi(\mu_A, \mu_B) \leq \epsilon
\]
strong approximate simulations

\[\phi : \mathbb{P}(Paths_A) \times \mathbb{P}(Paths_B) \rightarrow \mathbb{R}^+ \] is an \((\epsilon, \delta)\)-strong approximate simulation if

\begin{align*}
\text{START} & \quad \phi(\mu_{A0}, \mu_{B0}) \leq \epsilon \\
\text{STEP} & \quad \phi(\mu_A, \mu_B) \leq \epsilon \quad \text{implies} \quad \phi(\mu'_A, \mu'_B) \leq \epsilon
\end{align*}
strong approximate simulations

\[\phi : \mathbb{P}(Paths_A) \times \mathbb{P}(Paths_B) \to \mathbb{R}^+ \text{ is an } (\epsilon, \delta)\text{-strong approximate simulation if} \]

START \[\phi(\mu_{A_0}, \mu_{B_0}) \leq \epsilon \]

STEP \[\phi(\mu_A, \mu_B) \leq \epsilon \text{ implies } \phi(\mu'_A, \mu'_B) \leq \epsilon \]

TRACE \[\phi(\mu_A, \mu_B) \leq \epsilon \text{ implies } d(tdist(\mu_A), tdist(\mu_B)) \leq \delta. \]
strong approximate simulations

\[\phi : \mathbb{P}(\text{Paths}_A) \times \mathbb{P}(\text{Paths}_B) \to \mathbb{R}^+ \] is an \((\epsilon, \delta)\)-strong approximate simulation if

- **START** \(\phi(\mu_{A0}, \mu_{B0}) \leq \epsilon \)
- **STEP** \(\phi(\mu_A, \mu_B) \leq \epsilon \) implies \(\phi(\mu'_A, \mu'_B) \leq \epsilon \)
- **TRACE** \(\phi(\mu_A, \mu_B) \leq \epsilon \) implies \(d(t\text{dist}(\mu_A), t\text{dist}(\mu_B)) \leq \delta \).

\[
\begin{array}{ccc}
\mu_{B0} & \mu_B & \mu'_B \\
\blacktriangle & \rho' & \blacktriangle \\
\blacktriangle & \blacktriangle \\
\mu_{A0} & \mu_A & \mu'_A
\end{array}
\]

Theorem
existence of \((\epsilon, \delta)\)-strong approximate simulation implies \(A \delta \)-implements \(B \)
automata with unaligned branching structure

\[
\begin{align*}
B &= r_0 \\
 &\quad \text{choose: } \frac{1}{n} \text{ or } \frac{n-1}{n} \\
 &\quad \text{choose: } \frac{1}{n} \text{ or } \frac{n+1}{n} \\
 &\quad \text{choose: } \frac{1}{n} \text{ or } \frac{n-1}{n}
\end{align*}
\]

\[
\begin{align*}
z &= 1 \\
 &\quad \text{out(1)}
\end{align*}
\]

\[
\begin{align*}
z &= 2 \\
 &\quad \text{out(2)}
\end{align*}
\]

\[
\begin{align*}
z &= n \\
 &\quad \text{out(n)}
\end{align*}
\]

\[
\begin{align*}
\theta(\mu_A, \mu_B) &= \begin{cases}
\max & \sum_{sA \cdot z = x} \mu_1(sA) - \sum_{sB \cdot z = x} \mu_2(sB) \\
\max & sA \cdot z \neq sB \cdot z \\
\mu_1(sA) + \mu_2(sB) & \text{no mismatched } z \text{'s}
\end{cases}
\end{align*}
\]
automata with unaligned branching structure

\[\begin{align*}
A & : \text{choose } \frac{1}{n} - \epsilon \\
& \quad \text{choose } \frac{1}{n} + \epsilon \\
y = 1 & \quad y = 2 & \quad \ldots & \quad y = n
\end{align*}\]

\[\begin{align*}
B & : \text{choose } \frac{1}{n} \\
& \quad \text{choose } \frac{1}{n} \\
z = 1 & \quad z = 2 & \quad \ldots & \quad z = n
\end{align*}\]
automata with unaligned branching structure

A

\[A \]

\[\begin{align*}
 & y = 1 \\
 & \downarrow \text{comp} \\
 & z = 2 \\
\end{align*} \]

\[\begin{align*}
 & y = 2 \\
 & \downarrow \text{comp} \\
 & z = 3 \\
\end{align*} \]

\[\begin{align*}
 & y = n \\
 & \downarrow \text{comp} \\
 & z = 1 \\
\end{align*} \]

\[\begin{align*}
 & \text{choose, } \frac{1}{n} - \epsilon \\
 & \text{choose, } \frac{1}{n} + \epsilon \\
\end{align*} \]

B

\[B \]

\[\begin{align*}
 & z = 1 \\
 & \downarrow \text{out(1)} \\
\end{align*} \]

\[\begin{align*}
 & z = 2 \\
 & \downarrow \text{out(2)} \\
\end{align*} \]

\[\begin{align*}
 & \ldots \\
 & \downarrow \text{out(n)} \\
\end{align*} \]

\[\begin{align*}
 & z = n \\
 & \downarrow \text{choose, } \frac{1}{n} \\
 & \downarrow \text{choose, } \frac{1}{n} \\
 & \text{choose, } \frac{1}{n} \\
\end{align*} \]

\[\begin{align*}
 & \text{no mismatched } z \text{'s} \\
 & \max \ s_A \cdot z = x \mu_1(s_A) - \sum s_B \cdot z = x \mu_2(s_B) \\
 & \text{otherwise.} \\
\end{align*} \]

\[\theta(\mu_A, \mu_B) = \begin{cases}
 \max \ x \in [n] \cup \{\perp\} \left| \sum s_A \cdot z = x \mu_1(s_A) - \sum s_B \cdot z = x \mu_2(s_B) \right|
 & \text{no mismatched } z \text{'s} \\
 \max s_A \cdot z \neq s_B \cdot z \left[\mu_1(s_A) + \mu_2(s_B) \right]
 & \text{otherwise.}
\end{cases} \]
automata with unaligned branching structure

A

\[
\begin{align*}
\text{\textcolor{blue}{comp}} & \quad \text{\textcolor{blue}{comp}} & \quad \text{\textcolor{blue}{comp}} & \quad \text{\textcolor{blue}{comp}} \\
y = 1 & \quad y = 2 & \quad \ldots & \quad y = n \\
z = 2 & \quad z = 3 & \quad \ldots & \quad z = 1 \\
\text{\textcolor{blue}{out}(2)} & \quad \text{\textcolor{blue}{out}(3)} & \quad \ldots & \quad \text{\textcolor{blue}{out}(1)} \\
\end{align*}
\]

B

\[
\begin{align*}
\text{\textcolor{blue}{choose}, } \frac{1}{n} - \epsilon & \quad \text{\textcolor{blue}{choose}, } \frac{1}{n} + \epsilon \\
y = 1 & \quad y = 2 & \quad \ldots & \quad y = n \\
z = 1 & \quad z = 2 & \quad \ldots & \quad z = n \\
\text{\textcolor{blue}{out}(1)} & \quad \text{\textcolor{blue}{out}(2)} & \quad \ldots & \quad \text{\textcolor{blue}{out}(n)} \\
\end{align*}
\]
automata with unaligned branching structure

\[\theta(\mu_A, \mu_B) = \begin{cases} \max_{x \in \{\text{comp}, \text{out}(1), \ldots, \text{out}(n)\} \cup \{\perp\}} \left| \sum_{s_A \cdot z = x} \mu_1(s_A) - \sum_{s_B \cdot z = x} \mu_2(s_B) \right| & \text{no mismatched } z \text{'s} \\ \mu_1(s_A) + \mu_2(s_B) & \text{otherwise.} \end{cases} \]
automata with unaligned branching structure

\[\theta(\mu_A, \mu_B) = \begin{cases}
\max_{x \in [n] \cup \{\perp\}} \left(\sum_{s_A.z = x} \mu_1(s_A) - \sum_{s_B.z = x} \mu_2(s_B) \right) & \text{no mismatched } z's
\end{cases} \]
automata with unaligned branching structure

candidate simulation function

\[
\theta(\mu_A, \mu_B) = \begin{cases}
\max_{x \in [n] \cup \{\bot\}} \sum_{s_A \cdot z = x} \mu_1(s_A) - \sum_{s_B \cdot z = x} \mu_2(s_B) & \text{no mismatched } z's \\
\max_{s_A \cdot z \neq s_B \cdot z} [\mu_1(s_A) + \mu_2(s_B)] & \text{otherwise.}
\end{cases}
\]
automata with unaligned branching structure

\[A \quad t_0 \quad B \quad r_0 \]

\[
\theta(\mu_A, \mu_B) = \begin{cases}
\max_{x \in [n] \cup \{\bot\}} \left| \sum_{s_A : z = x} \mu_1(s_A) - \sum_{s_B : z = x} \mu_2(s_B) \right| & \text{no mismatched } z \text{'s} \\
\max_{s_A : z \neq s_B : z} \left[\mu_1(s_A) + \mu_2(s_B) \right] & \text{otherwise.}
\end{cases}
\]

\[
\theta(\mu_{A0}, \mu_{B0}) = 1 - 1 \leq \epsilon
\]
automata with unaligned branching structure

\[\theta(\mu_A, \mu_B) = \begin{cases}
\max_{x \in [n] \cup \{\bot\}} \left| \sum_{s_A : z = x} \mu_1(s_A) - \sum_{s_B : z = x} \mu_2(s_B) \right| & \text{no mismatched } z \text{'s} \\
\max_{s_A : z \neq s_B : z} \left[\mu_1(s_A) + \mu_2(s_B) \right] & \text{otherwise.}
\end{cases} \]

\[\theta(\mu_{A1}, \mu_{B1}) = \left(\frac{1}{n} + \epsilon + \ldots + \frac{1}{n} - \epsilon \right) - 1 \leq \epsilon \]
automata with unaligned branching structure

\[\theta(\mu_A, \mu_B) = \begin{cases}
\max_{x \in [n] \cup \{\bot\}} \left| \sum_{s_A \cdot z = x} \mu_1(s_A) - \sum_{s_B \cdot z = x} \mu_2(s_B) \right| & \text{no mismatched } z's \\
\max_{s_A \cdot z \neq s_B \cdot z} \left[\mu_1(s_A) + \mu_2(s_B) \right] & \text{otherwise.}
\end{cases} \]

\[\theta(\mu_{A2}, \mu_{B2}) = \frac{2}{n} + \epsilon \]
automata with unaligned branching structure

\[\theta(\mu_A, \mu_B) = \begin{cases}
\max_{x \in [n] \cup \{\perp\}} \left| \sum_{s_A \cdot z = x} \mu_1(s_A) - \sum_{s_B \cdot z = x} \mu_2(s_B) \right| & \text{no mismatched } z's \\
\max_{s_A \cdot z \neq s_B \cdot z} [\mu_1(s_A) + \mu_2(s_B)] & \text{otherwise.}
\end{cases} \]

\(\theta \) is not a strong approximate simulation
automata with unaligned branching structure

\[\theta(\mu_A, \mu_B) = \begin{cases}
\max_{x \in [n] \cup \{\perp\}} \left| \sum_{s_A : z = x} \mu_1(s_A) - \sum_{s_B : z = x} \mu_2(s_B) \right| & \text{no mismatched } z \text{'s} \\
\max_{s_A : z \neq s_B : z} [\mu_1(s_A) + \mu_2(s_B)] & \text{otherwise.}
\end{cases} \]

strong approximate simulations cannot relate automata with “unaligned” internal branching structure
expansion of a function

given $\phi : X \times Y \rightarrow \mathbb{R}^+$,

$$\hat{\phi}(x_1, y_1) = \min_{\psi \in \Gamma(x_1, y_1)} \left[\max_{(x, y) \in \psi} \phi(x, y) \right]$$
expansion of a function

given $\phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$,

$$\hat{\phi}(x_1, y_1) = \min_{\psi \in \Gamma(x_1, y_1)} \left[\max_{(x, y) \in \psi} \phi(x, y) \right]$$

Lemma

for any $\epsilon \geq 0$, ϵ-sublevel set of $\hat{\phi}$ is the convex hull of the ϵ-sublevel set of ϕ.
expansion of a function

given $\phi : X \times Y \rightarrow \mathbb{R}^+$,

$$\hat{\phi}(x_1, y_1) = \min_{\psi \in \Gamma(x_1, y_1)} \left[\max_{(x, y) \in \psi} \phi(x, y) \right]$$

Lemma

for any $\epsilon \geq 0$, ϵ-sublevel set of $\hat{\phi}$ is the convex hull of the ϵ-sublevel set of ϕ.
expanded approximate simulations

\[\phi : \mathbb{P}(Paths_A) \times \mathbb{P}(Paths_B) \rightarrow \mathbb{R}^+ \] is an \((\epsilon, \delta)\)-approximate simulation if:

START \(\phi(\mu_{A0}, \mu_{B0}) \leq \epsilon \)

Theorem: existence of \((\epsilon, \delta)\)-approximate simulation implies \(A^{\delta}\)-implements \(B\)
expanded approximate simulations

\[\phi : \mathbb{P}(\text{Paths}_A) \times \mathbb{P}(\text{Paths}_B) \rightarrow \mathbb{R}^+ \] is an \((\epsilon, \delta)\)-approximate simulation if:

- **START** \[\phi(\mu_{A0}, \mu_{B0}) \leq \epsilon \]
- **STEP** \[\phi(\mu_A, \mu_B) \leq \epsilon \text{ implies } \hat{\phi}(\mu'_A, \mu'_B) \leq \epsilon \]
expanded approximate simulations

$\phi : \mathbb{P}(Paths_A) \times \mathbb{P}(Paths_B) \to \mathbb{R}^+$ is an ϵ, δ-approximate simulation if:

- **START** $\phi(\mu_{A0}, \mu_{B0}) \leq \epsilon$
- **STEP** $\phi(\mu_A, \mu_B) \leq \epsilon$ implies $\hat{\phi}(\mu'_A, \mu'_B) \leq \epsilon$
- **TRACE** $\phi(\mu_A, \mu_B) \leq \epsilon$ implies $d(tdist(\mu_A), tdist(\mu_B)) \leq \delta$.

Theorem

existence of (ϵ, δ)-approximate simulation implies $A \delta$-implements B
example (continued)

\[\theta(\mu_{A0}, \mu_{B0}) \leq \epsilon \quad \theta(\mu_{A1}, \mu_{B1}) \leq \epsilon \quad \theta(\mu_{A2}, \mu_{B2}) = \frac{2}{n} + \epsilon \]

\[\hat{\theta}(\mu_{A2}, \mu_{B2}) \leq 2\epsilon \]
\[
\theta(\mu_{A0}, \mu_{B0}) \leq \epsilon \quad \theta(\mu_{A1}, \mu_{B1}) \leq \epsilon \quad \theta(\mu_{A2}, \mu_{B2}) = \frac{2}{n} + \epsilon
\]

<table>
<thead>
<tr>
<th>(\psi)</th>
<th>(\delta_{y=1,z=2})</th>
<th>(\delta_{y=2,z=3})</th>
<th>(\delta_{y=3,z=4})</th>
<th>(\delta_{y=4,z=1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_{z=1})</td>
<td></td>
<td></td>
<td></td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>(\delta_{z=2})</td>
<td>(\frac{1}{4} - \epsilon)</td>
<td></td>
<td></td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>(\delta_{z=3})</td>
<td></td>
<td>(\frac{1}{4} - \epsilon)</td>
<td></td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>(\delta_{z=4})</td>
<td></td>
<td></td>
<td>(\frac{1}{4})</td>
<td></td>
</tr>
</tbody>
</table>

\(\psi\) consistent with marginals \(\mu_{A2}\) and \(\mu_{B2}\)
\[\theta(\mu_{A0}, \mu_{B0}) \leq \epsilon \quad \theta(\mu_{A1}, \mu_{B1}) \leq \epsilon \quad \theta(\mu_{A2}, \mu_{B2}) = \frac{2}{n} + \epsilon \]

<table>
<thead>
<tr>
<th>\psi</th>
<th>\delta_{y=1,z=2}</th>
<th>\delta_{y=2,z=3}</th>
<th>\delta_{y=3,z=4}</th>
<th>\delta_{y=4,z=1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\delta_{z=1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\delta_{z=2}</td>
<td>\frac{1}{4} - \epsilon</td>
<td></td>
<td></td>
<td>\frac{1}{4}</td>
</tr>
<tr>
<td>\delta_{z=3}</td>
<td></td>
<td>\frac{1}{4} - \epsilon</td>
<td>\epsilon</td>
<td></td>
</tr>
<tr>
<td>\delta_{z=4}</td>
<td></td>
<td></td>
<td>\frac{1}{4}</td>
<td></td>
</tr>
</tbody>
</table>

if \(\nu_1, \nu_2 \) have matched values of \(z \), \(\theta(\nu_1, \nu_2) = \epsilon \)
\[\theta(\mu_{A0}, \mu_{B0}) \leq \epsilon \quad \theta(\mu_{A1}, \mu_{B1}) \leq \epsilon \quad \theta(\mu_{A2}, \mu_{B2}) = \frac{2}{n} + \epsilon \]

<table>
<thead>
<tr>
<th>(\psi)</th>
<th>(\delta_{y=1, z=2})</th>
<th>(\delta_{y=2, z=3})</th>
<th>(\delta_{y=3, z=4})</th>
<th>(\delta_{y=4, z=1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_{z=1})</td>
<td>1</td>
<td>1</td>
<td>(\frac{1}{4})</td>
<td>1</td>
</tr>
<tr>
<td>(\delta_{z=2})</td>
<td>(\frac{1}{4} - \epsilon)</td>
<td>(\frac{1}{4} - \epsilon)</td>
<td>(\epsilon)</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>(\delta_{z=3})</td>
<td>(\frac{1}{4} - \epsilon)</td>
<td>(\epsilon)</td>
<td>(\epsilon)</td>
<td>(\epsilon)</td>
</tr>
<tr>
<td>(\delta_{z=4})</td>
<td>1</td>
<td>1</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>

If \(\nu_1, \nu_2 \) have mismatched values of \(z \), \(\nu_1(s_A), \nu_2(s_B) \leq \epsilon \), \(\theta(\nu_1, \nu_2) = 2\epsilon \)
\[\theta(\mu_{A_0}, \mu_{B_0}) \leq \epsilon \quad \theta(\mu_{A_1}, \mu_{B_1}) \leq \epsilon \quad \theta(\mu_{A_2}, \mu_{B_2}) = \frac{2}{n} + \epsilon\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\psi & \delta_{y=1,z=2} & \delta_{y=2,z=3} & \delta_{y=3,z=4} & \delta_{y=4,z=1} \\
\hline
\delta_{z=1} & & & & \frac{1}{4} \\
\hline
\delta_{z=2} & \frac{1}{4} - \epsilon & & \epsilon & \\
\hline
\tilde{\delta}_{z=3} & \frac{1}{4} - \epsilon & \epsilon & & \\
\hline
\delta_{z=4} & \frac{1}{4} & & & \\
\hline
\end{array}
\]

\[\hat{\theta}(\mu_{A_2}, \mu_{B_2}) \leq 2\epsilon\]
example (continued)

\[\theta(\mu_{A0}, \mu_{B0}) \leq \epsilon \quad \theta(\mu_{A1}, \mu_{B1}) \leq \epsilon \quad \theta(\mu_{A2}, \mu_{B2}) = \frac{2}{n} + \epsilon \]

<table>
<thead>
<tr>
<th>\psi</th>
<th>\delta_{y=1,z=2}</th>
<th>\delta_{y=2,z=3}</th>
<th>\delta_{y=3,z=4}</th>
<th>\delta_{y=4,z=1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\delta_{z=1}</td>
<td></td>
<td></td>
<td>\frac{1}{4}</td>
<td>\epsilon</td>
</tr>
<tr>
<td>\delta_{z=2}</td>
<td>\frac{1}{4} - \epsilon</td>
<td></td>
<td>\epsilon</td>
<td>\epsilon</td>
</tr>
<tr>
<td>\delta_{z=3}</td>
<td></td>
<td>\frac{1}{4} - \epsilon</td>
<td>\epsilon</td>
<td>\epsilon</td>
</tr>
<tr>
<td>\delta_{z=4}</td>
<td></td>
<td></td>
<td>\frac{1}{4}</td>
<td>\epsilon</td>
</tr>
</tbody>
</table>

\[\hat{\theta}(\mu_{A2}, \mu_{B2}) \leq 2\epsilon \]

\(\theta \) is a \((2\epsilon, 2\epsilon)\)-approximate simulation from \(A \) to \(B \)
\[\theta(\mu_{A0}, \mu_{B0}) \leq \epsilon \quad \theta(\mu_{A1}, \mu_{B1}) \leq \epsilon \quad \theta(\mu_{A2}, \mu_{B2}) = \frac{2}{n} + \epsilon \]

<table>
<thead>
<tr>
<th>\psi</th>
<th>\delta_{y=1,z=2}</th>
<th>\delta_{y=2,z=3}</th>
<th>\delta_{y=3,z=4}</th>
<th>\delta_{y=4,z=1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\delta_{z=1}</td>
<td></td>
<td></td>
<td>\frac{1}{4}</td>
<td></td>
</tr>
<tr>
<td>\delta_{z=2}</td>
<td>\frac{1}{4} - \epsilon</td>
<td></td>
<td>\epsilon</td>
<td></td>
</tr>
<tr>
<td>\delta_{z=3}</td>
<td>\frac{1}{4} - \epsilon</td>
<td>\frac{1}{4} - \epsilon</td>
<td>\epsilon</td>
<td></td>
</tr>
<tr>
<td>\delta_{z=4}</td>
<td></td>
<td>\frac{1}{4} - \epsilon</td>
<td>\epsilon</td>
<td>\frac{1}{4}</td>
</tr>
</tbody>
</table>

\[\hat{\theta}(\mu_{A2}, \mu_{B2}) \leq 2\epsilon \]

\theta \text{ is a } (2\epsilon, 2\epsilon)-\text{approximate simulation from } A \text{ to } B

A \text{ 2\epsilon-implements } B
discussion

approximate implementations for probabilistic automata

- metric on \(\mathbb{P}(Ext) \), \(Ext \) itself not required to be a metric space
discussion

approximate implementations for probabilistic automata

- metric on $\mathbb{P}(\text{Ext})$, Ext itself not required be a metric space
- discounted uniform metric $d_\delta(\eta_1, \eta_2) = \sup_{\beta \in \text{Ext}^*} \delta^{\mid \beta \mid} |\eta_1(\beta) - \eta_1(\beta)|$
discussion

approximate implementations for probabilistic automata

- metric on \(\mathbb{P}(Ext) \), \(Ext \) itself not required be a metric space
- discounted uniform metric \(d_\delta(\eta_1, \eta_2) = \sup_{\beta \in Ext^*} \delta^{|\beta|} |\eta_1(\beta) - \eta_1(\beta)| \)

inductive proof technique based on real-valued simulation function \(\phi \)
discussion

approximate implementations for probabilistic automata

- metric on $\mathbb{P}(Ext)$, Ext itself not required be a metric space
- discounted uniform metric $d_\delta(\eta_1, \eta_2) = \sup_{\beta \in Ext^*} \delta^{\lvert \beta \rvert} \lvert \eta_1(\beta) - \eta_1(\beta) \rvert$

inductive proof technique based on real-valued simulation function ϕ

- expansion of ϕ is same as Wasserstein distance
discussion

approximate implementations for probabilistic automata

- metric on \(\mathbb{P}(\text{Ext}) \), Ext itself not required be a metric space
- discounted uniform metric
 \[
 d_\delta(\eta_1, \eta_2) = \sup_{\beta \in \text{Ext}^*} \delta|\beta| |\eta_1(\beta) - \eta_1(\beta)|
 \]

inductive proof technique based on real-valued simulation function \(\phi \)

- expansion of \(\phi \) is same as Wasserstein distance

probabilistic reasoning about systems

- safety: if \(B \) is unsafe with probability at most \(p \) and \(A \infty\)-implements \(B \)
 then \(A \) is unsafe with probability at most \(p + \delta \)
discussion

approximate implementations for probabilistic automata

- metric on $\mathbb{P}(Ext)$, Ext itself not required be a metric space
- discounted uniform metric $d_\delta(\eta_1, \eta_2) = \sup_{\beta \in Ext^*} \delta |\beta| |\eta_1(\beta) - \eta_2(\beta)|$

inductive proof technique based on real-valued simulation function ϕ

- expansion of ϕ is same as Wasserstein distance

probabilistic reasoning about systems

- safety: if B is unsafe with probability at most p and $A \delta$-implements B then A is unsafe with probability at most $p + \delta$
- termination: consider a consensus protocol A which uses perfectly random coins. if the coins of A are slightly biased then the probability of termination after r rounds degrades, but not too rapidly.
discussion

approximate implementations for probabilistic automata

- metric on \(\mathbb{P}(Ext) \), \(Ext \) itself not required be a metric space
- discounted uniform metric
 \[
 d_\delta(\eta_1, \eta_2) = \sup_{\beta \in Ext^*} \delta|\beta| |\eta_1(\beta) - \eta_1(\beta)|
 \]

inductive proof technique based on real-valued simulation function \(\phi \)

- expansion of \(\phi \) is same as Wasserstein distance

probabilistic reasoning about systems

- safety: if \(B \) is unsafe with probability at most \(p \) and \(A \) \(\delta \)-implements \(B \) then \(A \) is unsafe with probability at most \(p + \delta \)
- termination: consider a consensus protocol \(A \) which uses perfectly random coins. if the coins of \(A \) are slightly biased then the probability of termination after \(r \) rounds degrades, but not too rapidly.
- SZK: indistinguishability of traces is captured as \(\delta \)-implementations
future research directions

approximate simulations of the form $\phi : \mathcal{P}(Q_A) \times \mathcal{P}(Q_B) \rightarrow \mathbb{R}^+$
future research directions

approximate simulations of the form \(\phi : P(Q_A) \times P(Q_B) \rightarrow \mathbb{R}^+ \)

compute approximate simulations for probabilistic automata
future research directions

approximate simulations of the form $\phi : \mathcal{P}(Q_A) \times \mathcal{P}(Q_B) \rightarrow \mathbb{R}^+$

compute approximate simulations for probabilistic automata

- Worrell and van Breugel gave poly-time algorithm for computing approximate bisimulations of finite state probabilistic automata (without nondeterminism) in 2006.
future research directions

approximate simulations of the form $\phi : \mathbb{P}(Q_A) \times \mathbb{P}(Q_B) \rightarrow \mathbb{R}^+$

compute approximate simulations for probabilistic automata

- Worrell and van Breugel gave poly-time algorithm for computing approximate bisimulations of finite state probabilistic automata (without nondeterminism) in 2006.

approximate implementations and simulations for hybrid systems—automata with discrete and continuous evolution