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Abstract. This paper presents an application of the Hybrid I/O Au-
tomaton (HIOA) framework [12] in verifying a realistic hybrid system.
A supervisory pitch controller for a model helicopter system is designed
and then verified. The design of the supervisor is limited by the actuator
bandwidth, the sensor inaccuracies, and the sampling rates. Verification
is carried out by induction over the length of an execution of the com-
posed system automaton. The HIOA model makes the inductive proofs
tractable by decomposing them into independent discrete and continuous
parts. The paper also presents a set of language constructs for specifying
hybrid I/O automata.

1 Introduction

Formal verification of hybrid systems is a hard problem. It has been shown
that checking reachability for even a simple class of hybrid automata is unde-
cidable [7]. Algorithmic verification techniques have been developed for smaller
subclasses of hybrid automata [1], but these subclasses are too weak to model
realistic hybrid systems. Languages and tools [6] developed for algorithmic veri-
fication are also inadequate for describing general hybrid systems. More recently,
algorithms for overapproximating the unsafe sets of general hybrid systems have
been developed [3], but applying these algorithms to systems with high dimen-
sionality remain a challenging problem.

An alternative to algorithmic verification is to derive the desired properties
of an automaton by induction over the length of its executions. The Hybrid
Input/Output Automaton (HIOA) model [13,14,12] model has been developed
for this purpose; see [8,19,11] for related earlier works. Being more expressive,
HIOA can model a larger class of hybrid systems. The inductive proofs are
tractable in this model because they are decomposed into independent discrete
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and continuous parts. Further, owing to the assertional style of proving the
invariants, it will be possible to partially automate the proofs using mechanical
theorem provers.

This paper presents the verification of a supervisory controller of a model
helicopter system using the HIOA framework. The helicopter system (Figure 1),
manufactured by Quanser [17], is driven by two rotors mounted at the two ends
of its frame. The frame is suspended from an instrumented joint mounted at the
end of a long arm. The arm is gimbaled on another instrumented joint and is
free to pitch and yaw, giving the helicopter three degrees of freedom. The rotor
inputs are either controlled by the user with a joystick, or by controllers designed
by the user. Students of Aeronautics and Astronautics at MIT experiment with
these systems by writing different controllers which often tend to damage the
equipment by pitching the helicopter too high or too low. This is also a hazard
for the users, and therefore the safety of the system is important.

The supervisory controller is designed to prevent the helicopter from reaching
unsafe states. It periodically observes the position and the velocity of the heli-
copter and overrides the user controller by conservatively estimating the worst
that might happen if the latter is allowed to remain in control. The design of the
supervisor is limited by the actuator bandwidth, the sampling rate, and sensor
inaccuracies. Safety of the supervisor is verified by modeling each component of
the system as a hybrid I/O automaton, and proving a set of invariants for the
composed system automaton.

This paper also describes a specification language for HIOA. In this lan-
guage discrete transitions of hybrid I/O automata are specified in the usual
precondition-effect style, and the continuous evolution is written in terms of
constrained “state-space” models called activities. At present we have tool sup-
port for IOA [5], a formal language for distributed systems, which is similar to
HIOA without the continuous part. We intend to extend the IOA Toolkit for
checking HIOA code, by adding the language constructs for the continuous part.
We are also working on building a theorem prover interface for HIOA.

Fig. 1. Helicopter model with three degrees of freedom.



The contributions of this paper are: (1) demonstration of a realistic application
of the hybrid I/O automata based verification methodology, (2) design of the
supervisory controller which ensures safety of the Quanser helicopter system
along the pitch axis, and (3) a set of language constructs for specifying hybrid
I/0 automata.

In Section 2 we review the hybrid I/O automata model and describe the spec-
ification language. We present the HIOA models of the system components and
the supervisor in Sections 3 and 4 respectively. Due to limited space we present
brief proof sketches for the important invariants required for proving safety of
the system in Section 5. The full version of the paper with complete proofs ap-
pears as a technical report [16]. Concluding remarks and future directions for
research are discussed in Section 6.

2 Hybrid I/O Automata

A brief review of the HIOA model is presented in this section. For a complete
discussion refer to [12]. Earlier versions of the model appeared in [13] and [14].

We introduce some notations used in the rest of the paper. If f is a function
and S is a set then we write f[S for the function g with dom(g) = dom(f) NS
such that for every ¢ € dom(g), g(c) = f(c). If also the range of f is a set of
functions then we write f | S for the function g with dom(g) = dom(f) such
that g(c) = f(c)[S for every ¢ € dom(g).

2.1 The HIOA Model

A hybrid I/O automaton captures the hybrid behavior of a system in terms of
discrete transitions and continuous evolution of its state variables. Let V' be the
set of variables of automaton A. Each v € V is associated with a (static) type
defining the set of values v can assume. A valuation v for V is a function that
associates each variable v € V to a value in type(v). A trajectory 7 of V is
defined as a mapping 7 : J — val(V) where J is a left closed interval of time. If
J is right closed then 7 is said to be closed and its limit time is the supremum of
the domain of 7, also written as 7.ltime. Each variable v € V is also associated
with a dynamic type (or dtype) which is the set of trajectories that v may follow.

A hybrid I/O automaton A consists of : (1) a set V' of variables, partitioned
into internal X, input U, and output variables Y. The internal variables are also
called state variables. Z = X UY is the set of locally controlled or local variables.
(2) a set A of actions , partitioned into internal H, input I, and output actions
0. (3) a set of states @ C val(X) , (4) a non-empty set of start states © C Q,
(5) a set of discrete transitions D C @ x A x Q. A transition (x,a,x') € D is
written in short as x —4 x'. (6) a set of trajectories T for V, such that for
every trajectory 7 in T, and for every t € T.dom, 7(t).X € Q. It is required
that 7 is closed under prefix, suffix, and concatenation. The first state 7(0).X of
trajectory is denoted by 7. f state. If 7.dom is finite then 7.lstate = 7(7.ltime).X.



In addition, a hybrid I/O automaton also satisfies: (1) the input action en-
abling property, which prevents it from blocking any input action and (2) the
input trajectory enabling property, which ensures that it is able to accept any
trajectory of the input variables either by allowing time to progress for the entire
length of the trajectory or by reacting with some internal action before that.

An execution of A is a finite or infinite sequence of actions and trajectories
¢ = 79,01,7T1,02...,where (1) each 7; € T, (2) T9.fstate € @ and (3) if 7; is
not the last trajectory in ¢ then 7; is finite and 7;.Istate i Ti1-fstate. An
execution is closed if the sequence is finite and the domain of the final trajectory
is a finite closed interval. The length of an execution is the number of elements
(actions and trajectories) in the sequence.

An invariant 7 of A is either derived from other invariants or proved by
induction on the length of a closed execution of A. The induction consists of a
base case, and an induction step. The base case tests that Z(s) is satisfied for all
s € ©. The induction step consists of : (1) A discrete part—which tests that for
every discrete step s = s’ € D, Z(s) implies Z(s'). (2) A continuous part—which
tests that for any closed trajectory 7 € T, with 7.fstate = s and T.lstate = s,
Z(s) implies Z(s"). We shall use s and s’ to denote the pre and the post states
of discrete transitions, and also the fstate and the [state of closed trajectories,
as will be clear from the context.

2.2 New Addition to HIOA Structure: Activities

In the earlier works [8,19,11] using the HIOA model, trajectories of automata
were specified using an ad hoc mixture of integral, algebraic equations and En-
glish. This form of specification cannot be analyzed easily, and it does not enforce
a consistent style in writing specifications. The specification language [15] used
in this paper uses “state space” representation [9] of the trajectories. To make
this representation work, the following extra structure has been introduced into
the basic HIOA model of [12].

The time domain is assumed to be the set of reals R. A variable v is discrete
if its dynamic type is the pasting closure of the set of constant functions from
left closed intervals of time to type(v). A variable is continuous if its dynamic
type is the pasting closure of the set of continuous functions from left closed
intervals of time to R. For any set S of variables, S; and S, refer to the discrete
and continuous subsets of S respectively.

Let e be a real valued algebraic expression involving the variables in X UU.
For a given trajectory 7, 7.e denotes the function with domain 7.dom that gives
the value of the expression e at all times over 7. Given that v is a local continuous
variable, a trajectory 7 satisfies the algebraic equation v = e, if for every t €
T.dom, (1 ] v)(t) = .e(t). If an algebraic equation involves a nondeterministic
choice such as v € [e1,ez], then T satisfies the equation if for every ¢t € T.dom,
(1 L v)(t) € [1.e1(t), T-e2(t)]. If the expression e is integrable when viewed as a



function, then 7 satisfies the differential equation v = e, if for every ¢t € 7.dom,

(1L 0)(t) = (T L 0)(0) + [y Te(t') dt'.

A state model of HIOA A consists of | Z,| number of independent algebraic and /or
differential equations with exactly one equation having v or d(v) as its left hand
side. The right hand sides of the equations are algebraic expressions involving
the variables in X UU. A state model specifies® the evolution of every variable
v in Z, from some initial valuation. A trajectory 7 satisfies a state model FE if
at all times over 7, all the variables in Z, satisfy the differential and algebraic
equations in E with 7(0) defining the initial valuations.

An activity a of HIOA A consists of three components: (1) an operating
condition P C Q, (2) a stopping condition PT C @, and (3) a state model E.
The set of trajectories defined by activity « is denoted by [a]. A trajectory T
belongs to the set [a] if the following conditions hold:

1. 7 satisfies the state model F.
2. For all t € 7.dom, (1 | X)(t) € P.
3. If (1 L X)(t) € PT for t € dom(r) then 7 is closed and t = T.[time.

We impose the following restrictions on hybrid I/O automata model in order to
specify the trajectories of an automaton as the union of the sets of trajectories
specified by its activities.

R1 Every variable is either discrete or continuous.

R2 Discrete variables are constant over trajectories, i.e.,

V1 €T, rlval[Zy = T.fval[ Zy.

R3 Operating conditions are disjoint,i.e., P; N P; = Qif i # j.

It is proved in [16] that a set of trajectories specified by a set of activities,
satisfy the prefix, suffix, and concatenation closure properties.

2.3 Language Constructs

In the HIOA specification language variables are declared by their names and
types. Varibales declared with the analog keyword are continuous, else they are
discrete. Actions are declared by their names, types, and optional list of parame-
ters. Algebraic expressions are written using the operators +, —, x, and \. A non-
deterministic assignment, such as v € [e;, e2], is written as v := chooseley, e3].
The derivative of a continuous variable x is written as d(z). The discrete tran-
sitions are written in the precondition—effect style of the IOA language [5]. An
activity a : (P, P, E) is written as:

activity « when P evolve E stop at PT.

For automata with a single activity, if either P or PT are not specified, then
they are assumed to be equal to @ and {) respectively.

3 By specifies we mean restricts rather than uniquely determines. Due to possible
nondeterminism in the state model, unique determination might not be possible.



3 Specification of System Components

This section describes the HIOA models for the components of the helicopter
system, except for the supervisory controller, which is in Section 4. Discrete
and continuous communication among the components are shown in Figure 3.
We consider the pitch dynamics of the helicopter, which are critical for safety.
A complete dynamical model of the helicopter with three degrees of rotational
freedom can be found in [18]. In practice the roll and yaw effects are eliminated
by making the initial conditions along these axes to be zero and giving identical
input to the two rotors. The pitch dynamics is described by 6§ + £2%cos8 = U(t),
where 2 is the characteristic frequency of the system and U is the net input for the
pitch axis ranging over Upin and Unmaz-

type RAD = Real suchthat (i :RAD, |i| < ©) % © max abs val for angles

type RADPS = Real suchthat (i : RADPS, |i| < @) % © max abs val for ang velocity
type UTYPE = Real suchthat (i: UTYPE | Upmin < ¢ < Umaaz)

hybridautomaton Plant ({2 : Real )

variables trajectories
input analog U : UTYPE, activity pitch_dynamics
internal analog 92 : RAD, 911J : RADPS, initially (Gg, 911,) €U, evolve d(@g) = 911);
output analog 99 : RAD, 4! : RADPS d(ﬁé) = —02cos 02 + U;
02 =02;0! =0}

Fig. 2. HIOA specification of the plant

The Plant automaton (Figure 2) specifies the evolution of the pitch angle 69
and the velocity 011, with U as input. The global types RAD, RADPS, and UTYPE
define the domains for variables representing angle, angular velocity and actuator
output respectively. The state variables 6 and 6, are initialized to some value
from the set U, which is defined in equation (4). A Plant state s is safe if the
pitch angle 3.02 is within 6,,;, and 6,,4,, which are the lower and the upper
safety bounds corresponding to the helicopter hitting the ground and a fragile
mechanical stop. The set of safe states is defined as:

S 2 {s | Omin < 5.69 < Omaa}- (1)

The Sensor automaton (Figure 4) periodically conveys the state of Plant to
the controllers as observed by the physical sensors. It is parameterized by the
sampling period A, the sensor errors for pitch angle €y, and velocity €;. The
variable now serves as a clock. The stopping condition of the read activity ensures
that a sample action occurs after every A interval of time. The value of 69 (and
6}) is nondeterministically chosen to be within +ey of 69 (e of 6} resp.) to
model the noise or the uncertainties in the sensing devices.
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Fig. 3. Components of Helicopter system. Continuous and discrete communication
among components are shown by wide and thin arrows respectively. The internal vari-
ables are marked inside the circles and internal actions are shown by a dashed self
loop.

hybridautomaton Sensor(eg,e1, A : Real )

actions variables
output sample ( 69 : RAD , 63: RADPS ) input analog 0 : RAD, 4 : RADPS,
internal analog 92 :RAD := 0, 0}1 : RADPS := 0,
discrete transitions now: Real :=0,
output sample ( 69 , 63) internal nezt_time : Real := A

pre now = nezt_time A
09 € [6° — €0, 0° + €o]A

0 € [0 —e1,0! + €] derived variable
eff nest_time := now + A s.time_left 2 s.next_time — s.now.
trajectories

activity read
evolve d(now) =1; 8% = 0% ; 91 = 01;

stop at now = next_time

Fig. 4. HIOA specification of the sensor and A/D conversion circuit

The UsrCtrl automaton (Figure 5) models an arbitrary user controller. It reads
the sample action and triggers an output control(ug) action, which communi-
cates the user’s output U, to the supervisor. The output U, is modeled as a
nondeterministic choice over the entire range U,,in t0 Upqr. This captures our
assumption that the user is capable of issuing arbitrarily bad control inputs to
the plant. The design of a safe supervisor for UsrCtrl ensures that the system
would be safe for any user controller because every controller must implement
this specification of UsrCtrl.

The Actuator automaton (Figure 6) models the actuator and the D/A converter.
The delay in the actuator response is modeled by a FIFO buffer of (u, st) pairs,
where u is a command issued from Supervisor, and the scheduled time st is



hybridautomaton UsrCtrl

actions variables
input sample ( 65 : RAD , 61 : RADPS ), internal #0: RAD := 0, 01 : RADPS := 0,
output control ( ug : UTYPE) U, : UTYPE := 0,
ready : Bool := false
discrete transitions
input sample ( 05, 63 ) output control ( ug )
eff 00 :=99; 91 =0} pre (uqg = Uy) A ready
U, := choose [Umin;Umazl; eff ready := false

ready := true

trajectories
activity void
evolve stop at ready

Fig. 5. Specification of User’s Controller

the time at which u is to be delivered to the plant. A command(u,m) action
appends (u, timer + Tqc¢) to buffer and a dequeue action copies buffer.head.u to
u, and removes buffer.head. The following invariant for Actuator can be proved

type MODES = { usr, sup }
hybridautomaton Actuator(7act)

actions variables
input command ( u : UTYPE ) internal u, : UTYPE := 0, readyy : Bool := false,
internal dequeue buffer : seq of (u:UTYPE, st:Real, m:MODE) := {}
output analog U : UTYPE := 0,
discrete transitions input analog now : Real
input command (u )
eff buffer + := (u, now + Tact); internal dequeue
readyq := true pre buffer.head.st = now A readyq
eff u, := buffer.head.v;
trajectories buffer := buffer.tail;
activity d2a readyq := false

evolve U = u,
stop at buffer.head.st = now

Fig. 6. Actuator and D/A conversion

by a simple induction.

Invariant 1 In any reachable state s of Actuator,
for all0 <i < s.buffer.size — 1,
s.now < s.buffer[i].st < s.buffer[i+1].st < s.now + Tact-

4 Supervisory Controller

The goal of the supervisory controller is to ensure safety of the plant while
interfering as little as possible with the user controller. There are well known



algorithms [4,2,10] for synthesizing controllers for linear hybrid systems. Our
design of the supervisory controller, however, is based on finding a safe operating
region U, from where , if the supervisor takes over control then it is guaranteed
to restore the plant to a safe state. In order to satisfy the minimal interference
requirement it is also desirable to make U as large as possible.

4.1 Switching Regions

Consider a region C C S, from which all the reachable states are contained
in S, provided that the input U to the plant is correct. By correct we mean
that the input to the plant is U = Upnin (0r Upaz) if the pitch angle 69 is in
the danger of reaching 6,,in (@maz resp.). As there is a Tuct delay in Actuator
buffer, the supervisor cannot change U instantaneously, and therefore the region
C is not a safe operating region. We define another region R C C as the set of
states from which all reachable states over a period of 7,.¢ are within C. Even
R is not a safe operating region because the supervisor cannot observe the plant
state accurately, and relies on the periodic updates from the inaccurate sensors.
Finally, we define the safe operating region U as follows: An observed state s’
is in U if starting from any actual plant state s corresponding to s’, all the
reachable states over a A interval of time are in R.

Switching back to the user controller from the supervisor is performed at the
boundary of an inner region I C U. This asymmetry in switching prevents high
frequency chattering between the user and the supervisory controllers.

The regions C, R, U, and I are defined as follows. Uneg = Umaz — Umin-

C = {5 | 5.05 € [Bmin, Omaz] A 5.05 € [ (5.69,0), I (5.69,0)]}, (2)

R 2 {5 | Omin < 5.09 < Omaoc A7 (5.00, Tact) < 5.81 < I (5.69,7act)},  (3)

U2 {5 Omin + €0 <5.0°< Opmaz —eo AU (5.09) < s5.01 <UT(s.00)}, (4)

I2 {s| Omin+c0 < 5.6° < Omazs — 0 NI (5.6°) < 5.1 < I7(5.6%)}. (5)

1
IO, T) = —UmagT + \/2(92 €08 Omaz — Umin)(maz — 0 + 5Umag T2), (6)
1
F_(BaT) = UmagT_ \/Q(Umam - 02)(0 - emin + EUmagT2)a (7)

UT(0) = —e1 + (0 + €0, Tact + A) U™(0) =+4+e+I"(0—co,Tact +A4Q)
IT(0) = —2€1 + ' (0 + 2€0, Tacs + A) I7(0) =+ 2e1 +I'" (0 — 2€0, Tact + A).
From the above definitions the following properties are derived.
Property 1 Over the interval —5 < 6 < T the following hold:

1. r*(8,7) and '—(8,T) are monotonically decreasing with respect to 6.
2. 1'*(6,T) is monotonically decreasing with respect to T. (T >0).

3. '=(6,T) is monotonically increasing with respect to 7. (T >0).

4. TH(0maz,T) <0 and I'~ (Omin,T) >0 for T > 0.

Property 2 ICUCRCCCS
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Fig. 7. (a) Regions in the statespace. (b) Trajectories in the settling (dashed lines) and
recovery(solid lines) periods.

4.2 Supervisor Automaton

The Supervisor automaton (Figure 8) copies the observed plant state into in-
ternal variables 9 and 6} when the sample action occurs. Based on this state
information the tentative output Us,, to the actuator is decided. When the con-
trol action occurs, the supervisor copies the user’s command into another internal
variable Uy, and sets the values of U; and mode for the next A interval based
on (69,6!) and the current value of mode. If mode is usr and the observed state
is in U then mode remains unchanged and Uy is set to Uyg,. If the present state
is not in U then mode is changed to sup and the Uy is set to Usgyp. If mode =

sup then Uy is copied from Us,, and the mode changes only when (02,6!) is in I.

5 Analysis of Helicopter System

In this section we present the safety verification of the composed system. Let
A denote the composition of the Plant, Sensor, UsrCtrl, Actuator, and the
Supervisor automata. Safety is preserved if all the reachable states of A are
contained within the region S. It is assumed that: (1) Gmin < 0 < |0min| < Omaz,
(2) Umaz > 22, Unin < 0, and (3) For any sample action s = &', if s.0) > I (s.62)
then, s'.0; > I(s'.62), and if 5.0 < I~ (5.00) then, s'.0; < I*(s'.62). Assumptions
(1) and (2) are derived from the dimensions of the physical system. Assumption
(3) is a requirement which limits the speed of the plant and the sampling period
so that it is not possible for the plant to jump across I without the sensors
detecting it.

In the next section, first we present some preliminary properties of A, then
we state the invariants of A, and prove some of the more important ones. The
details of all the invariant proofs can be found in [16].



hybridautomaton Supervisor

actions variables
input sample (92: RAD 0;: RADPS), internal 92 : RAD := 0, ai : RADPS := 0,
input control (uq : UTYPE), Usupy Uusr, Us : UTYPE := 0,
output command (uq : UTYPE, m : MODES) internal ready, : Bool := false, mode : MODES := usr

internal analog 7t : Real := 0;

discrete transitions

input sample (9, 63) input control (ugq)
eff Gg = 92; 0; = 95; eff Uysr 1= ug4; ready. := true

if 0; > I+(93) then Usup = Unmin if mode = usr then

elseif 9! < 17(0%) then Uy, := Upae i if (09,0!) € U then U, := Uy,

else U, := Usup; mode := sup fi
output command (ug, m) elseif mode = sup then
pre ready. A (uqg = Us) A m = mode if (0°,01) € I then U, := U,,,; mode := usr
eff ready. := false else Us, :=U,up fi fi
trajectories

activity supervisor activity wuser

when mode = sup when mode = usr

evolve d(rt) = 1 stop at ready. evolve rt = 0 stop at ready.

Fig. 8. HIOA specification of supervisor automaton

5.1 Some Preliminary Properties of A

The specification of the components of A satisfy restrictions R2, R2 and R3
and the plant state variables ) and ), are not modified by any discrete action.
The next two properties follow from these facts:

Property 3 Discrete variables of A are unaltered over all closed trajectories.
Property 4 For any discrete step s = s' of A, s'.Hg = 3.02 and s'.t911, = 3.011).

Invariant 2 follows from the code by a straightforward induction. Lemma 1 fol-
lows from Invariant 2 and indicates the times at which the different actions
of A occur. Invariant 3 limits the size of the buffer and it is a consequence of
Invariant 1 and Lemma, 1.

Invariant 2 In every reachable state s of A, 0 < s.time_left < A.

Lemma 1 In any ezecution of A, sample, control, and command actions occur
when now = nA, and dequeue actions occur when timer = Taer +nA for some
integer n > 0.

Invariant 3 In every reachable state s, for all 0 < i < s.buffer.size — 1,
s.buffer[i+1].st= s.buffer[i].st + A, and s.buffer.size < [Tg].



5.2 User Mode

In this section we prove that A is safe in the user mode. We define a set of
regions A; for 0 <t < A, and Lemma 2 states the properties of the A; regions.
Ai = {5 500 € [Bmin, Omaz] A 8.0% € [ (5.09, Tose + 1), I (5.69, Teze + 1) }.

Lemma 2 The regions A; satisfy: 1. Ag =R, 2. UC A,x, and

3. If0<t <t < A then Ay C Ay.

The next lemma bounds the reachable sates over a singe trajectory and is used
to prove safety when a tarjectory starts from the safe operating region U. In-
variant 4 makes use of Lemma 3. The safety of the system in the user mode is
established by Invariant 5.

Lemma 3 For any closed trajectory T of A,
if .fstate € Ay then T.lstate € Ay_jime(r)-

Proof: Consider a closed trajectory 7. Assume that s € A;. From the definition
of A; it follows that, Omin < 5.9 < Omae and I'" (5.6, Tese+t) < 5.0, < I'T(5.09, Tezs+
t). We conservatively estimate s’ by considering the maximum and the minimum
input U to Plant. First considering the maximum positive input, U = Unqz,
from the state model of Plant we get the upper bound on the acceleration at any
state s” in 7 : d(s”.65) < —£2% €08 Omaz + Umao- Integrating from ¢ to t', it follows
that s".8) < (Umaz — 22 €08 Omaz)t’ + 5.6%, and .65 < L(Umazr — 22 c08 maz)t’” +
5.05t' + .65, Simplifying and using the definition of I't we get the following
bounds on s".0) and s".0): §'.0) < Omaz, and §'.0; < TF(s'.6), Teee +t —t'). Simi-
larly considering maximum negative output, U = Ui, we get the lower bounds
on 5'.0% and s'.0. 5.6 > 8,in, and .0} > '™ (5'.69, Tuts +t—t'). Combining equa-
tions all the above bounds on s’ it follows that s’ € A;_p. O

Invariant 4 In any reachable state s,
if s.mode = usr and —s.ready then s € A, time_icfi-

Invariant 5 In any reachable state s, if s.mode = usr then s € R.

Proof: The base case holds because all initial states are in U and U C R.
Consider any discrete transition s — s, with s'.mode = usr. We split the proof
into two cases: If —s'.ready, then using Invariant 4, s' € Ay timeieft C R. On
the other hand, if s'.ready, then m #control, and s.mode = usr since only the
control action can change mode. So from the inductive hypothesis s € R. It
follows that s’ € R from the Property 4.

For the continuous part consider a closed trajectory 7 with 7.fstate = s,
T.lstate = s', and s'.mode = usr. Once again there are two cases, if —s’.ready
then s’ € R by Invariant 4. Else if s’.ready, then s.ready and s.mode = usr be-
cause ready and mode does not change over the trajectories. Since s satisfies the
stopping condition for activity void in UsrCtrl, therefore 7 is a point trajectory,
that is, s’ = s. From the inductive hypothesis, s € R. Therefore s’ € R. O



5.3 Supervisor Mode : Settling Phase

For proving safety in the supervisor mode, we first state some of the simple
invariants. Invariant 6 states that, in all reachable with ready set to false, if the
sensed plant state is within It and I~, then the system is in the user mode.
Invariant 7 follows from the code of the sample action. And Invariant 8 is proved
by a simple induction.

Invariant 6 In any reachable state s,
I=(5.60°%) < 5.0 <T7(5.8%) A —s.ready = s.mode = usr.

Invariant 7 In any reachable state s,
if 5.01 > I (5.09) then s.Usup = Unin, and
if 8.01 < I(5.09) then s.Usyp = Umaz.

Invariant 8 In any reachable state s,
s.rt = nA — s.time_left, for some integer n > 1.

We define two predicates Q: and Q, that capture the progress made by the
system while the actuator delays the delivery of commands issued by the su-
pervisor. A state s satisfies Qf (or Qy ), if the last k commands in s.buffer are
equal t0 Upin (or Uppnes respectively). More formally, for any k& > 0,

Q7 (s) £ Vi, max(0, s.buffer.size —k) < i < s.buffer.size, s.buffer[i].u = Unin,
Q; (s) = Vi, maz(0, s.buffer.size —k) < i < s.buffer.size, s.bufferfi].u = Umas.

Clearly, for all k > 0, Q; (s) implies Q;_,(s), and therefore for any k > s.buffer.size,

Q; (s) implies that Q}"(s) holds for all j < s.buffer.size. Similar results hold for Q; .

The next invariant states that every reachable state s in the supervisor mode, satisfies

either Q?‘M1 (s) or QFMW (s), depending on whether s is above I'" or below I~ re-
A A

spectively. In addition if s.readyq is true, that is, s is in between a command action and

a dequeue action, then QF, , (s) or Q- ,,:-,.(s) holds, depending on the location
[#x-1+1 [#x-1+1

of s with respect to I and I~.

Invariant 9 In any reachable state s, such that s.mode = sup:
If s.0F > I7(5.09) then (a) QY. .. (s), (b) If readys then Q7 (s),

r+t1 re5t1+1

If 5.0} < I~ (5.02) then (a) QFL”](S), (b) If readyq then QFﬂH_l(s)
A A

The next invariant formalizes the notion that after a certain 7.ct period of time in the
supervisor mode the input to the plant is correct.

Invariant 10 In any reachable state s, such that s.mode = sup and s.rt > Tact
1. If 5.0 > I7(5.60) then s.U = Unin, and 2. If s.0% < 17 (5.0°) then s.U = Upaxz,

We split the execution of A in the supervisor mode (Figure 7(b)) into (a) a settling
phase of length 7ucy in which the input U to the plant is arbitrary, and (b) a variable
length recovery phase during which rt > 7.ct and the input to the plant is correct, that
is, in accordance with Invariant 10.

Next we define a set of regions By, for 0 < t < Tact, which are analogous to the A,
regions: By 2 {s| 5.0% € [Bmin, Omaz] A .05 € [ (5.63, Tacs —t), I (5.609, Tacs —1)]}.



Lemma 4 states the relationship between the By regions. Invariant 11 bounds
the location of a state s in terms of the B, regions, when s.rt < T,ct. This implies
the safety of the system in the settling phase.

Lemma 4 The regions By satisfy: 1. Bo =R, 2. B
3. If 0<t<t< Ty then B, C By.

=C,

Tact

Invariant 11 For any reachable state s,
if s.mode = sup A s.rt < Tact then s € By .

5.4 Supervisor Mode: Recovery Phase

Invariant 12 states that C is an invariant set for the system in the recovery phase.
A sketch of the proof is given here, the complete proof can be found in [16].

Invariant 12 In any reachable states s,
if s.mode = sup and s.rt > T.ct then s € C.

proof sketch: The base case is trivially satisfied. The discrete part of the induc-
tion is also straightforward, the control action alters the mode. If s.mode = sup
then using the inductive hypothesis, s’ € C. Otherwise s.mode = usr and
s'.rt = 0 and the invariant holds vacuously. For all other discrete actions the
invariant is preserved. For the continuous part of the induction, consider closed
trajectory 7 with s'.mode = sup and s'.rt > 7act. We claim that s € C. From
Property 3 it is known that s.mode = sup, (1) If s.rt < Taet then from Invari-
ant 11 it follows that s € C. Otherwise (2) s.7t > Tact and from the inductive
hypothesis it follows that s € C. If s € U, then from Lemma 3 it follows that
s' € R C C. So it remains to show that if s € C\ U then s’ € C. This is
proved by contradiction, suppose s’ ¢ C, then there must exist ¢’ € r.dom such
that 7 leaves the C at 7(¢'). Then it must be the case that the trajectory 7
and the outer-normal of boundary of C should form an acute angle. It is known
from Lemma, 10 that at any intermediate state 7(t'), the input U to the plant is
correct. A contradiction is reached by showing that if 7(¢') is on the boundary of
C, then the angle between the above-mentioned vectors is obtuse. Finally, com-

bining the Invariants proved above the safety property of the composed system
can be proved.

Theorem 1 All reachable states of A are contained in C.

Proof: For any reachable state s, if s.mode = usr then s € R C C by Invariant
5. Otherwise s.mode = sup, and there are two possibilities: if s.rt < 7.t then,
by Invariant 11, s € B, s C C. Else 5.1t > 7ac¢ and it follows from Invariant 12
that s € C.



6 Conclusions

In this paper we have presented an advanced application of the HIOA framework
for verifying hybrid systems. The safety of the designed supervisory controller
was established by proving a set of invariants. The proof techniques demonstrate
two properties that we believe are important for reasoning about complex hybrid
systems: (1) the proofs are decomposed into discrete and continuous parts, which
are independent of each other, and (2) the reasoning style is purely assertional,
that is, based on the current state of the system, rather than complete executions.

The design of the supervisory controller uses a safe operating region of the
plant, beyond which the supervisor overrides the user controller, performs ap-
propriate recovery, and returns control to the user. The duration of the recovery
period has not been discussed here, but it has been shown in [18] to be bounded.
The size of the safe operating region, depends on the plant dynamics, sensor er-
rors, sampling period, actuator bandwidth, and saturation. An implementation
of the supervisory controller in the actual system is in progress. In the future
we intend to design and verify a class of supervisory controllers that reduce un-
necessary interferences by utilizing additional information about particular user
controllers.

The specification language used is based on the hybrid I/O automaton model
of [12] with the addition of certain extra structures to specify the trajectories
using activities. We intend to incorporate the language extensions into a toolkit
for automatically checking HIOA programs. At present we are also working on
building a theorem prover interface for HIOA that will partially automate the
verification process.
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