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Abstract. For large distributed systems built from inexpensive com-
ponents, one expects to see incessant failures. This paper proposes two
models for such faults and analyzes two well-known self-stabilizing al-
gorithms under these fault models. For a small number of processes,
the properties of interest are verified automatically using probabilistic
model-checking tools. For a large number of processes, these properties
are characterized using asymptotic bounds from a direct Markov chain
analysis and approximated by numerical simulations.

1 Introduction

Self-stabilization guarantees automatic fault-tolerance: after a fault, the system
may deviate from its desirable behavior for a finite amount of time, but it even-
tually reaches a desirable (or legal) state automatically. This property is partic-
ularly attractive in large distributed systems where manual failure management
is impractical. Self-stabilizing algorithms for mutual exclusion, leader election,
spanning tree construction and other distributed computation tasks have been
extensively studied (see for example [1,2,3]). These algorithms guarantee that
once failures cease a legal state is reached in a finite number of steps. Often the
number of steps (and therefore the amount of time) required for recovery from
even a single failure grows at least linearly with the size of the system, and it is
assumed that no further failures occur during this period. For these algorithms
to be valid, the failure probability times the number of components must be
significantly less than one.

Distributed systems built from off-the shelf components and deployed in
harsh environments [4,5,6] will experience frequent component failures. As a
result, these systems may not experience failure-free periods which are long
enough to recover completely to a legal state. In this paper, we initiate a system-
atic investigation of distributed algorithms in the face of such incessant failures.
Random transmission and link failures have been studied recently in [7,8]. Also,
fault-tolerance with respect to a locally bounded number of faults (as opposed
to globally bounded) has been studied in [9]. To the best of our knowledge, how-
ever, our work is the first attempt at investigating distributed systems under
random failures with bounded failure rate.

In the face of incessant faults, the system will not stabilize, i.e. enter a legal
state and remain there. However, not all illegal states are equivalent; some are



worse than others. For a given distributed system with state space X, define
Q : X → R, which determines “how far” each state is from legal: legal states are
those for which Q = 0, and high Q states are ones which are particularly bad.
We show below how to use a Markov chain to model a distributed system under
incessant faults. The Markov chain (under weak assumptions) will have a unique
invariant measure π which leads to natural global measures of performance (e.g.
the mean of Q, Prob(Q > k) for some k, etc.). If one knows π, then one can
compute all of these, but in general, it is difficult to compute π explicitly.

Two observations emerge from the results in this paper. First, the measure
π depends significantly on the types of allowed faults, i.e. changing the fault
model leads to a significantly different “typical state” during the evolution of a
system. Secondly, since a post-fault state depends on the pre-fault state, which
itself depends on the output of the algorithm after a random number of steps,
etc., one can no longer assume that the stabilization process and the faults are
decoupled. That is, when the faults occur on a timescale comparable to (or shorter
than) the stabilization time, the system and the faults interact in complicated
ways. This leads to some surprising and non-intuitive phenomena and requires
a novel approach to the analysis of such systems.

In this paper, we take a first step towards development of this general theory.
Specifically, we do the following:

We define two incessant fault models, the update (U) fault and the sleep-
update (S/U) fault. Roughly, an update fault only occurs when a process at-
tempts to update its state; a sleep-update fault can occur at any time. Each
type of fault transforms a given stochastic automaton model of a fault-free dis-
tributed algorithm into a new stochastic automaton with additional probabilistic
transitions. In particular, for synchronous distributed algorithms, the resulting
fault-transformed system is a Markov chain. Next, we analyze Dijkstra’s self-
stabilizing token ring algorithm (TR) [10] and a randomized graph coloring al-
gorithm (GC) from [11] under incessant faults. First, for a small number (N ≈ 7)
of participating processes, we verify quantitative properties of these algorithms
using probabilistic model checkers [12,13]. This analysis is automatic and pro-
vides exact values for quantitative properties, however, owing to the state space
explosion it does not scale well with N . Second, we use techniques from prob-
ability theory to analyze the underlying Markov processes of TR. The insight
gained from the Markov chain analysis allows us to understand how TR tends
to fail under the U and S/U fault models, and this naturally leads to a modified
version, namely TR2, which, as we show, performs significantly better under in-
cessant faults. Finally, we perform simulations of both algorithms for large N to
give an idea how several performance metrics depend on parameters.

The results of this paper suggest performing an analogous analysis of many
well-known self-stabilizing algorithms for routing, maximal independent set,
leader election [3], etc. We expect that the specific phenomena observed here
will be representative of a wide range of models, and analysis along these lines
will be very useful in developing new algorithms which are robust to incessant
faults. Moreover, the scaling problems we encounter with standard model check-



ers suggests the exploration of parallelizable statistical tools such as [14,15], and
further emphasizes the need for new tools and techniques.

2 Background and Fault Models

There are several formalisms for compositionally specifying randomized dis-
tributed algorithms (see, for example [16,17,18,19] and the references therein).
We describe fault-prone algorithms as stochastic automata, which are simplified
versions of the Probabilistic I/O Automata of [20].

We denote the set of probability distributions over a set S by P(S). In de-
scribing the states of processors in a distributed system, we find it convenient
to use a variable structure. Let X be a set of variables. Each variable x ∈ X,
is associated with a type, denoted by type(x), which is the set of values that x
may take. A valuation of the variables in X is a function that associates each
x ∈ X with a value in type(x). A particular valuation for a set of variables X is
written as x, and the value of an individual variable x is denoted by x.x. The
set of all valuations of X is denoted by V al(X). For a valuation x ∈ V al(X),
the restriction of x to Y ⊆ X is denoted by x d Y . For a probability distribution
µ ∈ P(V al(X)) the marginal distribution of µ on Y ⊆ X is denoted by µ d Y .

2.1 Stochastic Automata

Definition 1. A Stochastic Automaton (SA) A is a 4-tuple (X,U, µ̄,→), where
(1) X is a set of state variables, V al(X) is called the set of states, (2) U is a
set of input variables, (3) µ̄ ⊆ P(V al(X)) is an initial distribution on states,
and (4) →⊆ V al(U)×V al(X)×P(V al(X)) is a set of probabilistic transitions,
satisfying: (D) for each u ∈ V al(U),x ∈ V al(X), there exists µ ∈ P(V al(X))
such that (u,x, µ) ∈→.

The input variables provide a mechanism for modeling inter-automata commu-
nication. For example, the state variable of one automaton may act as inputs
to others. In a synchronous distributed system, this variable-based communica-
tion can be implemented by message passing. In this paper, we assume existence
of unique initial distribution of SA for the sake of convenience; the metrics we
analyze in Sections 3 and 4 are in fact independent of the initial distributions.

Notation. If (u,x, µ) ∈→, we write (u,x)→ µ. For a SA A we denote its com-
ponents by UA, XA, µ̄A and →A, respectively, and for a SA A1 its components
are denoted by U1, X1, µ̄1 and →1.

Informally, each execution or run ofA is a (possibly infinite) sequence (u0,x0),
(u1,x1), . . .. Each pair in the sequence corresponds to a probabilistic transition
or a step. Throughout this paper, we use the “time” and “number of steps”
synonymously. As in [20], we can define the probability measures over sets of
executions of A by resolving the nondeterminism with a scheduler, however, for
this paper we work with a restricted class of SAs which simplifies the formal
framework.



A is said to be finite if V al(XA) is finite, closed if UA = ∅, pure if for
every u ∈ V al(U),x ∈ V al(X) there exists a unique µ satisfying condition
(D), and deterministic if for every (u,x)→A µ, µ is a Dirac delta distribution.
A particular probabilistic transition u,x → µ is said to be active if µ 6= δx,
otherwise it is passive. (Throughout this paper δx is the Dirac measure at x.)
A state x ∈ V al(X) is said to be stable if for all u ∈ V al(U) there are no
active transitions from (u,x). Clearly, a closed, pure SA A is equivalent to a
discrete time Markov chain (DTMC) with state space V al(XA). Suppose PA is
the transition matrix of this equivalent Markov chain.

Example 1. The pseudocode in Figure 1 specify ordinary (Left) and special
(Right) processes participating in Dijkstra’s token ring [10]. The natural num-
bers N and K are parameters. TRi, 0 < i < N , is a deterministic, finite-state SA
with the following components: (1) set of state variables Xi = {xi}, where xi is
a variable of type {0, . . . ,K − 1}, (2) set of input variables Ui = {xi−1}, where
xi−1 is a variable of type {0, . . . ,K − 1}, (3) µ̄ is the uniform distribution over
V al(Xi), (4) for each u ∈ V al(Ui),x ∈ V al(Xi), (u,x)→ µ iff (i) u.xi−1 = x.xi
and µ = δx, or (ii) u.xi−1 6= x.xi and µ = δx′ , where x′ is the valuation that
assigns u.xi−1 to xi.

automaton TR(N,K:N,const i 6= 0)
variables

state xi: {0, . . . , K − 1} := uni[{0, . . . , K − 1} ]
input xi−1: {0, . . . , K − 1}

transitions
pre xi 6= xi−1
eff xi := xi−1

automaton TR(N,K:N,const i = 0)
variables

state x0: {0, . . . , K − 1}
:= uni[{0, . . . , K − 1} ]

input xN−1: {0, . . . , K − 1}

transitions
pre x0 = xN−1
eff x0 := x0 + 1 mod K

Fig. 1. SA models for token ring. Left: processes i = 1 . . . N − 1, Right process i = 0.

The parallel composition operation on SA is used for building models of
distributed systems where several processes execute concurrently and communi-
cate through shared input variables. Roughly, the composed SA is obtained by
taking the union of the variables of the component automata and merging the
transitions.

Definition 2. Two SA are compatible if they have disjoint set of state variables.
Given a pair of compatible SA A1 and A2 their composition, denoted by A1‖A2,
is defined as the structure (U,X, µ̄,→), where (1) X = X1 ∪ X2, (2) U =
(U1 ∪ U2) \ X, (3) µ̄ = µ̄1 × µ̄2, and (4) → is defined as follows: for each
u ∈ V al(U),x ∈ V al(X), µ ∈ P(V al(X)), (u,x) → µ iff for each i ∈ {1, 2}
((u,x) d Ui, (u,x) d Xi)→i µi d Xi.

It is easy to check that (finite, pure, deterministic) SA are closed under com-
position. The composition operation is inductively extended to multiple SA in



the obvious way. A particular probabilistic transition u,x→ µ of the composed
stochastic automaton A = A1‖A2 is said to be active with respect to A1 if
µ d X1 6= δxdX1 .

Example 2. The overall token-ring system TR(N,K) is specified as composition
of TR(N,K, 0)‖ TR(N,K, 1)‖ . . . TR(N,K,N−1). We define the following func-
tions which will be useful later:

token(x, i) = (i = 0 ∧ x.x0 = x.xN−1) ∨ (i 6= 0 ∧ x.xi 6= x.xi−1)
hastoken(x) = {i | token(x, i)}, legal(x) = (|hastokens(x)| = 1).

Here x is a valuation of all the variables of TR and i ∈ {0, . . . , N − 1}.

2.2 Incessant Fault Models

We introduce two models for random incessant faults. These faults introduce ad-
ditional probabilistic transitions in a SA A which capture the effect of the faults
on state variables of A. Update faults capture (possibly transient) faults in the
memory, disk drives, network interface cards, while sleep-update faults capture
the effects of stochastic disturbances such as transient hardware faults, power
surges, cosmic rays, and corruption of messages. First, we define how incessant
faults transform the SA models for individual processes. In the update(U) fault
model, whenever a SA A performs a computation and sets new values to its
state variables, with some probability a fault occurs and the variable is set to
an arbitrary value.

Definition 3. Given a SA A, the U-faulty version of A with rate ε ∈ (0, 1] is
a SA B = (XB, UB, µ̄B,→ B), where UB = UA, XB = XA, µ̄B = µ̄A, and →B is
defined as follows: for every (u,x)→A µ where µ 6= δx, (u,x)→B µ′, where for
every x′ ∈ V al(X), µ′(x′) is defined as (1− ε)µ(x′) + ε

|V al(X)| .

It is clear from the above that if A is pure (also closed) then so is B. Also, once B
reaches a stable state, update faults do not occur. The above is the definition of
U -faults for a single process; the faulty model for a complete distributed system
is obtained by composing the transformed SA for the individual processes.

Sleep-update faults may affect the state of the system even after a stable
state is reached: at every step, each state variable may be reset to an arbitrary
value with some small probability.

Definition 4. Given a SA A, the S/U-faulty version of A with rate ε ∈ (0, 1]
is a SA B = (XB, UB, µ̄B,→ B), where UB = UA, XB = XA, µ̄B = µ̄A, and
→B is defined as follows: for every (u,x) →A µ, (u,x) →B µ′ where for every
x′ ∈ V al(X), µ′(x′) = (1− ε)µ(x′) + ε

|V al(X)| .

Example 3. The pseudocode in Figure 2 specifies the version of TRi under S/U-
faults. The parameter ε serves as the rate for incessant faults. STRi, i 6= 0, is a
SA with set of state variables, input variables, and initial distribution identical to
that of TRi of Figure 1. The specification of the version with U-faults, denoted by
UTRi, is identical to STRi, except that the second set of probabilistic transitions
is absent. The code for the transitions specify the probabilistic transitions.



automaton STR(N,K:N,const i 6= 0, ε : (0, 1))
variables

state xi: {0, . . . , K − 1}
:= uni[{0, . . . , K − 1} ]

input xi−1: {0, . . . , K − 1}

transitions
pre xi = xi−1
eff xi := xi−1 with prob (1− ε) +

k : {0, . . . , K − 1} with prob ε/K;

pre xi = xi−1
eff xi := xi with prob (1− ε) +

k : {0, . . . , K − 1} with prob ε/K;

Fig. 2. TR with incessant sleep-update (S/U) faults.

3 Token Ring

In this section, we analyze S/U-faulty and U-faulty version of Dijkstra’s to-
ken ring algorithm TR(N,K) (see Figure 2). First, we use probabilistic model-
checking to exactly verify quantitative properties of the faulty systems. These
techniques are automatic and they provide exact answers to a rich class of quan-
titative questions; however, they do not scale to systems with large number of
processes. Our second approach analyzes the Markov chain corresponding to
these systems directly; this allows us to determine bounds on the probabilities
of various events. This analysis enables us to prove properties of the faulty sys-
tem with arbitrarily large number of processes assuming that the fault rates are
not too large; specifically, we assume that faults are rare enough so that it is
unlikely to see more than one fault during any single transition, but common
enough that many faults may occur during a self-stabilization process.

Analysis for small N . Probabilistic model checking tools (including PRISM [12]
and MRMC [13]) can be used for verifying quantitative properties of Stochastic
Automata, Markov Chains, and Markov Decision Processes. Given (a) a de-
scription of the model and (b) a property, a model checker returns true or false
depending on whether the property is satisfied in all states of the system or not.
For probabilistic model checking, properties may include boolean predicates as
well as quantitative statements about the probability of certain states and ex-
ecutions (paths). These properties are described using probabilistic extensions
of temporal logics such as Probabilistic Computational Tree Logic (PCTL) [12],
Continuous Stochastic Logic (CSL) [21], and QuaTEx [14].

For the token ring system under U-faults and S/U-faults we are interested in
the following quantitative properties:

Steady State(SS). For each k ∈ {1, . . . , N}, define SS(k) as the probability of the
system being in any state x with |hastokens(x)| = k, where this probability
is taken with respect to the invariant measure of the Markov chain.

Expected Stabilization Time (EST). For a state y, define L(y) to be the ex-
pected number of steps required to reach a state x satisfying legal(x).
The EST of an algorithm under a certain error model is then defined as
maxyL(y). (N.B.: Under S/U-faults the legal states are no longer absorb-
ing, so this quantity is more pertinent for U-faults.)



Fig. 3. Top: Steady state probabilities (SS) for TR under U-faults (Left) and S/U-
faults (Right). Bottom: EST for TR under U-faults (Left) and S/U-faults (Right).

Expected Retention Time (ERT). Define R(i) as the expected time to reach a
state y with ¬token(y, i), given that we start at a state x with token(x, i),
and define the ERT as maxiR(i).

The EST metric is useful in applications where just reaching a stable state
allows a higher level application to make progress. For example, in a wireless
system where graph coloring (see Section 4) is used for channel frequency assign-
ments, reaching a stable coloring means that a node can send a packet success-
fully (at least for one round). We computed SS, EST, and ERT for N = 4 . . . 71

with different fault rates ε = 0.2, 0.4, 0.6 and 0.8. Typical results are shown in
Figure 3. In the case of U-faults (UTR), as ε → 0 the probability of observing
k > 1 tokens drops off and the probability of observing a single token approaches
1. In the case of S/U-faults (STR), the probability of observing k > 1 tokens
also drops to 0 but at a slower rate. These observations comport with general
results on limits of regularly-perturbed Markov chains [22].

1 Modelchecking larger systems proved to be impractical with PRISM.
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Fig. 4. Simulation of UTR for N = 200,K = 201, ε = 0.15. Left: a raster plot of the
locations of the tokens versus time. Right: Total number of tokens versus time; the
number of tokens in each cycle grow to about εN = 30; this process is roughly periodic
with period N .

For computing the expected stabilization times (EST) we assign a reward
of 1 unit to every transition of the system and then we check for the following
property in PRISM: R=?[F legal {|hastokens| = k}]. Here F is the eventual
operator and R is the expected reward operator in temporal logic. Both the EST
and ERT increase with fault rates, and this increment is much more pronounced
in STR.

Analysis for large N. For large N , we consider the Markov chain correspond-
ing to UTR(N,K, ε) and analyze it directly; our observable Q will be the number
of tokens.

We denote t ∈ N as the round number, Tt as the (random) number of tokens
at round t, and Lt as the (random) subset of {0, . . . , N − 1} giving the locations
of the tokens at round t. Whenever a process changes value, it goes to the
correct value with probability 1 − ε(K − 1)/K (there is a ε/K probability of a
fault accidentally giving the right answer) and to any given incorrect state with
probability δ := ε/K).

First consider the case of a single token in the system: Tt = 1, Lt = {n}, n 6=
0. Then xi = a for i = 0, . . . , n − 1 and xi = b for i = n, . . . , N − 1 for some
a 6= b. The only process which will change is the nth, and without a fault the new
value would be a; however, with faults we have P (xn 7→ a) = 1− ε+ δ, P (xn 7→
b) = δ, P (xn 7→ c) = (K − 2)δ, where c 6= a, c 6= b. Changing to b is an error,
but does not change the number of tokens, so the probability of having two
tokens after the update is (K − 2)δ. Thus, if Tt = 1 ∧ Lt = {n}, n 6= 0, then
P (Tt+1 = 1) = 1 − (K − 2)δ, P (Tt+1 = 2) = (K − 2)δ. On the other hand, if
Lt = {0}, then the state of the system is xi = a for all i. The correct transition
would be for x0 7→ a+1, but even if there is an incorrect transition x0 7→ b 6= a+1,
the process still has one correct token.

Now consider the case of multiple tokens. We first assume that there are
multiple tokens in a row, but away from the 0 process: Tt = q, Lt = {n, n +
1, . . . , n + q − 1}, 0 6∈ Lt. We show the result of one update, where we assume
correct execution, and we denote by stars those states for which an error is
possible:



process: n− 1 n n+ 1 n+ 2 . . . n+ q − 2 n+ q − 1 n+ q

before: xn−1 xn xn+1 xn+2 . . . xn+q−2 xn+q−1 xn+q−1

after: xn−1 x
∗
n−1 x∗n x∗n+1 . . . x∗n+q−3 x∗n+q−2 xn+q−1

Consider the (n+1)st process; it should have a token under correct execution.
But even if there is an update fault, unless the new value is one of the two values
xn−1, xn+1, then it will still have a token. If the fault occurs at the (n + 1)st
process, then the probability of decreasing the number of tokens is either 2δ
or δ (it is the latter if xn−1 = xn+1). This holds true for all of the processes
n + 1, . . . , n + q − 1. The process cannot decrease the number of tokens if the
update fault occurs at process n. Thus the probability of decreasing the number
of tokens by one is, to leading order, bounded above by (2q−1)δ. If the new value
of process n is anything other than xn−1 or xn, then this increases the number of
tokens, so the probability of an increase in tokens is (K−2)δ. Therefore, whenever
Tt = q, Lt = {n, n+1, . . . , n+q−1}, we have P (Tt+1 = q+1) = δ(K−2)+O(δ2),
and P (Tt+1 = q − 1) ≤ δ(2q − 1) +O(δ2).

Finally, consider the case where there are multiple tokens, but the set of
tokens is not contiguous. Each contiguous block of tokens will act as if there are
no other tokens in the system, since the entire algorithm is local. Thus, if we
have l blocks of lengths ql, with

∑
ql = q, then the probability of decreasing

the number of tokens is then bounded above by δ
∑
l(2ql − 1) +O(δ2) ≤ ε(2q −

1)/(K − 1) +O(ε2), while the probability of increasing the number of tokens is
δ
∑
l(K − 2) +O(δ2) = εl(K − 2)/(K − 1) +O(ε2). In short, more blocks means

more likelihood of gaining a token, since tokens are created on the boundaries
of blocks of tokens.

Consider a run of tokens next to the 0 process, i.e. Lt = {N − q, . . . , N − 1}.
If none of the values xN−q, . . . , xN−1 are equal to x0, then each of these values
updates to its predecessor, but the 0 process would stay fixed (notice the 0
process is sleeping throughout). This ends with exactly one token at 0 after q
updates. If, however, one of these tokens is equal to x0, this creates an erroneous
token; as these q updates progress, we create an erroneous token each time there
is a coincidence between states N−1 and 0. Since the incorrect states are chosen
randomly, we expect about q/K of these coincidences.

We are now prepared to describe the typical “life cycle” of UTR. Start with
a single token at process 0. The earliest a token can cycle around and reach
0 again is after N computational steps, so we want to compute the number of
tokens we would expect to have after N steps, or TN . Using the bounds on tokens
increasing or decreasing, define T̃t as the stochastic process with T̃0 = 1 and

P (T̃t+1 = T̃t + 1) = ε(K − 2)/(K − 1),

P (T̃t+1 = T̃t − 1) = ε(2q − 1)/(K − 1),
(1)

and T̃t+1 = T̃t otherwise. By Chernoff’s Theorem [23, Theorem 9.3], we have
that P(T̃t < Tt) ∼ eρt for some ρ < 0. Rescaling and passing to the limit [24,



Theorem 5.3] that, with probability exponentially close (in N) to one,

T̃N =
N

2
(1− e−2ε) + o(N) ≈ εN.

Thus if the system starts with a single token at the 0 process, the process will
eventually generate a run of tokens of length q ≈ εN , but this run will be
effectively cleared up when it reaches process 0 — in fact, the mean number
of tokens which survive after this run of tokens is absorbed by zero is about
q/K ≈ εN/K < ε.

The simulations shown in Figure 4 corroborate the above analysis. These
results are obtained by encoding a virtual token ring in Matlab. In every time-
step, we first compute the correct transition. We then determine which processes
could have a fault in this step (for the U model, the processes which updated;
for the S/U model, all processes). For each processes which could have a fault,
we chose an random number in [0,1]; if it was less than ε, then that process has
an error, i.e. it is set to a randomly chosen value in {0, ...,K − 1}.

Fig. 5. Left: Steady state distribution of TR2 under update faults. Right: EST of TR2
under sleep-update faults for N = 5.
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Fig. 6. Mean number of tokens in the steady state of TR and TR2 in both error
models with N = 100. The mean is taken over 105 updates after the system is
started in a correct state.

Modified Token Ring algorithm TR2. The TR algorithm does not perform
well in the presence of incessant faults, even if they are only U-faults. One



insight gained in the probabilistic arguments above is that, in the U-fault model,
multiple tokens tend to come in runs. A simple way to correct this is to change
the algorithm so that no process attempts to enter a state in which both it, and
its predecessor, have a token. One such method is a “two lookbacks” version of
TR, where each process looks at the inputs from two predecessors; we call this
algorithm TR2. Basically, the algorithm looks to the two previous processors,
and updates to its predecessor only if the previous two agree, otherwise it sleeps
(see Figure 7). In Figure 5 we display the performance of TR2 with 5 processes

automaton TR2(N,K:N,const i > 1)
variables

state xi: {0, . . . , K − 1} := uni[{0, . . . , K − 1} ]
input xi−1, xi−2: {0, . . . , K}

transitions
pre xi 6= xi−1 ∧ xi−1 = xi−2
eff xi := xi−1

Fig. 7. Modified token ring algorithm.

using PRISM, and in Figure 6 for 100 processes using simulations. TR2 works
significantly better than TR for both error models and in all parameter regimes.

4 Graph Coloring

We analyze S/U-faulty and U-faulty versions of the randomized graph coloring
algorithm from [11]. The pseudocode in Figure 8 describes the self-stabilizing
graph coloring algorithm. Fix an undirected graph G with N vertices. For each
vertex i ∈ {0, . . . , N − 1} in the graph, the set of neighbors (adjacent vertices)
of i is denoted by NBi, K = maxi |NBi| is the maximum degree of G, and
define the palette P of colors as the set {0, . . . ,K}. GCi, 0 ≤ i ≤ N − 1, is a SA
with the following components: (1) A set of state variables Xi = {xi}, where
xi is of type P , and the value of xi is the color of vertex i. (2) A set of input
variables Ui = {xj |j ∈ NBi}, where each xj is a variable of type P . NCi is a
derived variable; its value is the set of colors (values) of the neighbors of i. (3) An
initial distribution µ̄ that is uniform over V al(Xi), and (4) a set of probabilistic
transitions we now define. We say that there is a collision at vertex i if the color
of i is in NCi. If there is a collision at i, process i picks a color in P \ NCi
uniformly at random. Define

conflict(x, i) = ∃ j ∈ NBi,x.xj = x.xi
hasconflict(x) = {i|conflict(x, i)}, legal(x) = (|hasconflict(x)| = 0).

For the graph coloring algorithm under U-faults and S/U-faults we are in-
terested in the following quantitative properties:

Steady State(SS) : SS(k) is the probability of the system being in a state x
satisfying |hasconflicts(x)| = k, for some k ∈ {0, . . . , N}.



automaton GC(N:N, P:set[N ], const i 6= 0)
variables

state xi: P := uni[P ]
input xj : P where j ∈ NBi

derived
NCi: Set[P ] := {xj |j ∈ NBi}

transitions
pre xi ∈ NCi

eff xi := uni[P \NCi]

Fig. 8. Self-stabilizing graph coloring algorithm autoGC.

Expected Stabilization Time (EST) : Starting from an arbitrary state with k
conflicts, the maximum expected time to reach a legal state.

Analysis for Small N. Just as was done for the token ring system, our analysis
for UGC and SGC for a small number of processes employs the PRISM and
MRMC model checkers. We compute SS and EST for randomly generated graphs
with N = 4 . . . 7 with different error rates ε = 0.2, 0.4, 0.6 and 0.8. Typical results
are shown in Figures 9. For U-faults (UGC), the states with no conflicts have

Fig. 9. GC(5, 4) under sleep-update (Top) faults SGC and update faults (Bottom) UGC.
Left: Steady state distribution. Right: Expected Stabilization Times (EST).

a steady-state probability of 1. This is because under U-faults, once a legal
configuration is reached, the system undergoes no further transitions, i.e. the
legal states are absorbing states of UGC. In the case of S/U-faults (SGC), the
steady-state probability of observing k > 0 conflicts is positive but it drops
to 0 as the error rate goes to 0. For example, we observe that with an error
rate of ε = 0.2, there is a 5% probability of observing 4 conflicts in the long
run. This type of quantitative results will be useful for analyzing performance



of higher-level applications that use graph coloring as a service, e.g., assignment
of channels in a multi-channel wireless network. Both for UGC and SGC, the
expected time to stabilize (EST) to a legal state decreases as the error rate
decreases. As expected the value of the EST for SGC is higher than that of UGC.
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Fig. 10. Numerical simulation for UGC (Top) showing the time to reach a legal state
and and SGC (Bottom) showing the mean number of collisions. In each case, we plot
the same data versus both ε and ρ.

Analysis for Large N. We present numerical simulations for UGC and SGC
in Figure 10. The obtain the undirected random graphs we choose N vertices
uniformly at random in the unit disk, fix a communication radius ρ ∈ [0, 2], and
add edges between vertices that are within distance ρ of one another. Each data
point corresponds to choosing an ensemble of ens graphs with a given ρ, each of
which is simulated with fault rate ε; the point plotted is the ensemble mean and
the error bars are the ensemble standard deviation. For UGC we plot the EST;
for SGC, we instead plot the average number of collisions over a long run. In
either case, a higher number is a signature of the poor performance. Of course,
both of these metrics worsen when ε is increased, but there is a plateau (perhaps
even a nonmonotonicity) for ρ ∈ (1/2, 1). Surprisingly, in this range increasing
the communication radius does not adversely affect performance.
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