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Abstract— We study a notion of estimation entropy for
continuous-time nonlinear systems, formulated in terms of
the number of system trajectories that approximate all other
trajectories up to an exponentially decaying error. We also
consider an alternative definition of estimation entropy which
uses approximating functions that are not necessarily trajec-
tories of the system, and show that the two entropy notions
are equivalent. We establish an upper bound on the estimation
entropy in terms of the sum of the desired convergence rate
and an upper bound on the matrix measure of the Jacobian,
multiplied by the system dimension. We describe an iterative
procedure that uses quantized and sampled state measurements
to generate state estimates that converge to the true state atthe
desired exponential rate. The average bit rate utilized by this
procedure matches the derived upper bound on the estimation
entropy. We also show that no other algorithm of this type can
perform the same estimation task with bit rates lower than the
estimation entropy. Finally, we discuss an application of the
estimation procedure in determining, from the quantized state
measurements, which of two competing models of a dynamical
system is the true model. We show that under a mild assumption
of exponential separation of the candidate models, detection
always happens in finite time.

I. I NTRODUCTION

Entropyis a fundamental notion in the theory of dynamical
systems. Roughly speaking, it describes the rate at which the
uncertainty about the system’s state grows as time evolves.
One can think of this alternatively as the exponential growth
rate of the number of system trajectories distinguishable
with finite precision, or in terms of the growth rate of the
size of reachable sets. Different entropy definitions (notably,
topological and measure-theoretic ones) and relationships
between them are studied in detail in the book [1] and
in many other sources, and continue to be a subject of
active research in the dynamical systems community. The
concept of entropy of course also plays a central role in
thermodynamics and in information theory (see, e.g., in [2]).

In the context of control theory, if entropy describes the
rate at which uncertainty is generated by the system (when
no measurements are taken), then it should also correspond
to the rate at which information about the system should
be collected by the controller in order to induce a desired
behavior (such as invariance or stabilization). This link has
not escaped the control community, and suitable entropy
definitions for control systems have been proposed and
related to minimal data rates necessary for controlling the
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system over a communication channel. The first such result
was obtained by Nair et al. in [3], where topological feedback
entropy for discrete-time systems was defined in terms of
cardinality of open covers in the state space. An alternative
definition was proposed later by Colonius and Kawan in [4],
who instead counted the number of “spanning” open-loop
control functions. The paper [5] summarized the two notions
and established an equivalence between them. Colonius
subsequently extended the formulation of [4] from discrete-
time to continuous-time dynamics and from invariance to
exponential stabilization in [6]. The survey [7] provides a
broader overview of control under data rate constraints.

In this work we are concerned with the problem of
estimating the state of a continuous-time system when state
measurements are transmitted via a limited-data-rate com-
munication channel, which means that only quantized and
sampled measurements of continuous signals are available
to the estimator. Observability over finite-data-rate channels
and its connection to topological entropy has been studied,
most notably by Savkin [8]. Our point of departure in this
paper is a synergy of ideas from Savkin [8] and Colonius [6].
As in [8], we focus on state estimation rather than control.
However, we follow [6] in that we consider continuous-
time dynamics and require that state estimates converge at
a prescribed exponential rate. As a result, our definition of
estimation entropycombines some features of the definitions
used in [8] and [6]. We also consider an alternative definition
of entropy which uses approximating functions that are
not necessarily trajectories of the system. We show that,
somewhat surprisingly, the two entropy notions turn out
to be equivalent (Theorem 1). We proceed to establish an
upper bound of(M + α)n/ln 2 for the estimation entropy
of an n-dimensional nonlinear dynamical system whose
Jacobian matrix has matrix measure bounded byM , when
the desired exponential convergence rate of the estimate is
α (Proposition 2). We note that the same estimation entropy
notions for globally Lipschitz systems were introduced and
studied in our recent paper [9]. When the system’s right-hand
side is differentiable and not just Lipschitz, our upper bound
on the estimation entropy is sharper than the one given in [9]
which has the Lipschitz constant in place ofM .

We proceed to describe an iterative procedure that uses
quantized and sampled state measurements to generate state
estimates that converge to the true state at the desired
exponential rate. The main idea in the algorithm, which
borrows some elements from [10] and earlier work cited
therein, is to exponentially increase the resolution of the
quantizer while keeping the number of bits sent in each



round constant. This is achieved by using the quantized state
measurement at each round to compute a bounding box for
the state of the system for the next round. Then, at the
beginning of the next round, this bounding box is partitioned
to make a new and more precise quantized measurement of
the state. We show that the bounding box is exponentially
shrinking in time at a rateα when the average bit rate utilized
by this procedure matches the upper bound(M + α)n/ln 2
on the estimation entropy (Theorem 3 and Proposition 4). We
also show that no other algorithm of this type can perform the
same estimation task with bit rates lower than the estimation
entropy (Proposition 5). In other words, the “efficiency gap”
of our estimation procedure is at most as large as the gap
between the estimation entropy of the dynamical system and
the above upper bound on it.

In the last part of the paper, we briefly discuss an applica-
tion of the estimation procedure in solving model detection
problems. Suppose we are given two competing candidate
models of a dynamical system and from the quantized state
measurements we would like to determine which one is the
true model. For example, the different models may arise from
different parameter values or they could model “nominal”
and “failure” operating modes of the system. This can be
viewed as a variant of the standard system identification or
model (in)validation problem (see, e.g., [11], [12]) except,
unlike in classical results which rely on input/output data,
here we use quantized state measurements and do not apply
a probing input to the system. We show that under a
mild assumption ofexponential separationof the candidate
models’ trajectories, a modified version of our estimation
procedure can always definitively detect the true model in
finite time (Theorem 6).

II. PRELIMINARIES

In this paper we work with the continuous-time system

ẋ = f(x), x(0) ∈ K (1)

where x ∈ R
n is the state,f : R

n → R
n is a C1

(continuously differentiable) function, andK ⊂ R
n is a

known compact set of initial states. Letξ : K ×R≥0 → R
n

denote the trajectories or solutions of (1), so thatξ(x, t) is
the solution from the initial statex evaluated at timet. We
assume that these solutions are defined globally in time, i.e.,
the system (1) is forward complete.1

We denote by| · | some chosen norm inRn. In general
definitions and results this norm can be arbitrary, but in
specific quantized algorithm implementations we will find
it convenient to use the∞-norm ‖x‖∞ := max1≤i≤n |xi|;
in those places, the choice of the∞-norm will be explicitly
declared. For anyx ∈ R

n and δ > 0, B(x, δ) ⊆ R
n is the

closed ball of radiusδ centered atx, that is,B(x, δ) = {y ∈
R

n : |x− y| ≤ δ}; for the∞-norm this is a hypercube.
Let ‖·‖ be the induced matrix norm onRn×n correspond-

ing to a chosen norm|·| onR
n. Then thematrix measureµ :

1We will later impose a condition on the Jacobian off guaranteeing that
the distance between solutions of (1) grows at most exponentially, and this
implies forward completeness.

R
n×n → R is defined byµ(A) := limε→0+

‖I + εA‖ − 1

ε
(see, e.g., [13]). One of the basic properties of matrix
measures is that for every matrixA we have

µ(A) ≤ ‖A‖ (2)

and we note that the left-hand side of (2) may be negative
while the right-hand side is always positive. The role that
matrix measures will play in our analysis of the nonlinear
system (1) is enabled by the following assumption, which
we impose throughout the paper, and by the well-known fact
stated in Lemma 1 below.
Assumption 1 The matrix measure of the Jacobian matrix
of f is bounded: for somēµ ∈ R we have

µ
(

∂f/∂x
)

(x) ≤ µ̄ ∀x ∈ R
n (3)

Lemma 1 Consider the system(1) satisfying Assumption 1.
Then for every pair of initial statesx1, x2 ∈ R

n the
corresponding solutions of(1) satisfy|ξ(x1, t)− ξ(x2, t)| ≤
eµ̄t|x1 − x2| for all t ≥ 0.

From the proof of this result (see, e.g., [14], [15]) it can be
seen that instead of requiring the bound (3) to hold globally
over Rn it is enough to know that it holds for all pointsx
reachable fromK at some timet ≥ 0, provided thatK is
a convex set. Moreover, if all solutions (1) starting fromK
remain in a bounded invariant set then aµ̄ with the indicated
property always exists (by continuity of∂f/∂x).

By default, the base of all logarithms is 2. When we
use the natural logarithm, we writeln. For a bounded set
S ⊆ R

n and δ > 0, a δ-cover is a finite collection of
points2 C = {xi} such that∪xi∈CB(xi, δ) ⊇ S. For a
hyperrectangleS ⊆ R

n and δ > 0, a δ-grid is a special
type of δ-cover ofS by hypercubes centered at points along
axis-parallel planes that are2δ apart. The boundaries of the
δ-hypercubes centered at adjacentδ-grid points overlap. For
a given setS, there are many possible ways of constructing
specificδ-grids. We can choose any strategy for constructing
them without changing the results in this paper. For example,
we can construct a special grid on, say, the unit interval.
Then, when working with a general intervalI (a cross-
section ofS in any given dimension), we mapI to the unit
interval, mark the chosen grid on it, and then map it back to
I. We denote theδ-grid onS by grid(S, δ).

III. E STIMATION ENTROPY

In this section we review the notion of estimation entropy
recently introduced in [9]. Let us select a numberα ≥ 0 that
defines a desired exponential convergence rate, and letT > 0
be a time horizon (which is initially fixed but ultimately
approaches∞). For eachε > 0, we say that a finite set
of functions X̂ = {x̂1(·), . . . , x̂N (·)} from [0, T ] to R

n is
(T, ε, α,K)-approximatingif for every initial statex ∈ K
there exists some function̂xi(·) ∈ X̂ such that

|ξ(x, t)− x̂i(t)| < εe−αt ∀ t ∈ [0, T ]. (4)

2With a slight abuse of terminology, we take the elements of a cover to
be the centers of the balls coveringS and not the balls themselves.



Let sest(T, ε, α,K) denote the minimal cardinality of such a
(T, ε, α,K)-approximating set, and defineestimation entropy
as

hest(α,K) := lim
εց0

lim
T→∞

1

T
log sest(T, ε, α,K).

It is easy to see that instead oflimεց0 we could equiva-
lently write supε>0, becausesest(T, ε, α,K) grows asε→ 0
for fixed T, α,K. Intuitively, sincesest corresponds to the
minimal number of functions needed to approximate the state
with desired accuracy,hest is the average number of bits
needed to identify these approximating functions. The inner
lim extracts the base-2 exponential growth rate ofsest with
time and the outer limit gives the worst case overε > 0.

As a special case, further considered below, we can define
the x̂i(·)’s to be trajectoriesξ(x, ·) of the system from
different initial states. Then,sest corresponds to the number
of quantization points needed to identify the initial states,
andhest gives a measure of the long-term bit rate needed for
communicating sensor measurements to the estimator. We
pursue this connection in more detail in Section V. We note
that the norm in the above definition can be arbitrary.

A. Alternative entropy notion

In the above definition, the functionŝxi(·) are arbitrary
functions of time and not necessarily trajectories of the
system (1). If we insist on using system trajectories, then
we obtain the following alternative definition: a finite set of
points S = {x1, . . . , xN} ⊂ K is (T, ε, α,K)-spanningif
for every initial statex ∈ K there exists some pointxi ∈ S
such that the corresponding solutions satisfy

|ξ(x, t)− ξ(xi, t)| < εe−αt ∀ t ∈ [0, T ]. (5)

Letting s∗est(T, ε, α,K) denote the minimal cardinality of
such a(T, ε, α,K)-spanning set, we could define estimation
entropy differently as

h∗
est(α,K) := lim

εց0
lim

T→∞

1

T
log s∗est(T, ε, α,K).

Since every (T, ε, α,K)-spanning set gives rise to a
(T, ε, α,K)-approximating set viâxi(t) := ξ(xi, t), and
since entropy is determined by the minimal cardinality of
such a set, it is clear thatsest(T, ε, α,K) ≤ s∗est(T, ε, α,K)
for all T, ε, α,K, and thereforehest(α,K) ≤ h∗

est(α,K)
for all α,K. Interestingly, this last inequality is actually
always equality. In other words, there is no advantage—
as far as estimation entropy is concerned—in using any
approximating functions (even possibly discontinuous ones)
other than system trajectories.

Theorem 1 For everyα ≥ 0 and every compact setK we
havehest(α,K) = h∗

est(α,K).

This result was proved in [9]. By compactness ofK and by
the property of continuous dependence of solutions of (1) on
initial conditions, for givenε, α, T there exists aδ > 0 such
that (5) holds wheneverx andxi satisfy |x− xi| < δ. From
this it immediately follows thats∗est(T, ε, α,K), and hence

alsosest(T, ε, α,K), is finite for everyε > 0. This does not
in principle precludeh∗

est(α,K) and hest(α,K) from being
infinite (the supremum over positiveε could still be∞).
However, we will see next that this does not happen if the
system satisfies Assumption 1.

IV. ENTROPY BOUNDS

In this section, we establish an upper bound on the
estimation entropy of (1). This entropy bound is independent
of the choice of the initial setK; without significant loss
of generality, we assume in the sequel thatK is a set of
positive measure and “regular” shape, such as a hypercube,
large enough to contain all initial conditions of interest.

The result given below relies on the global boundµ̄
on the matrix measure of the Jacobian off provided by
Assumption 1. While this assumption is restrictive, we note
the following points. First, as we commented after Lemma 1,
this can be replaced by a bound over the reachable set, which
automatically exists if the reachable set is bounded. Second,
we are not assuming that̄µ < 0, i.e., the system need not
be contractive. Finally, it is useful to compare the entropy
bound given here to the one established in [9], which applies
to globally Lipschitz (but not necessarilyC1) systems and
looks similar but has the Lipschitz constantL of f in place of
µ̄. Whenf is C1, the bound derived here is sharper because
the Lipschitz constant is equal to the induced norm of the
Jacobian and so, in light of (2), we havēµ ≤ L.

Proposition 2 For the system(1) satisfying Assumption 1,
the estimation entropyhest(α,K) is finite and does not
exceed(M + α)n/ln 2, whereM := max{µ̄,−α}.

The proof proceeds along the lines of the proof of Propo-
sition 2 in [9] (see also [14] and the references therein for
earlier results along similar lines).

Remark 1 In the case when (1) is a linear system

ẋ = Ax (6)

the result of Proposition 2 can be sharpened. Namely, in this
case one can show that the exact expression (not just an
upper bound) for the estimation entropy is

1/(ln 2)
∑

Reλi(A)>−α

(Reλi(A) + α) (7)

where Reλi(A) are the real parts of the eigenvalues ofA.
This follows from results that are essentially well known,
although not well documented in the literature (especiallyfor
continuous-time systems); for discrete-time systems thisis
shown, e.g., in [8]. Namely, since the flow isξ(x, t) = eAtx,
the volume of the reachable set at timeT from the initial
setK is det(eAT )vol(K) which by Liouville’s trace formula
equalse(trA)T vol(K). The decaying factore−αt on the right-
hand side of (4) can be canceled by multiplying byeαt on
both sides; the effect of doing this on the left-hand side
is that of replacing solutions oḟx = Ax by solutions of
ẋ = (A + αI)x, and suitably modifying the approximating



functions. Projecting onto the unstable subspace ofA+ αI,
we can refine the trace to be the sum of only unstable
eigenvalues of this matrix. The number of approximating
functions must be at least proportional to the above volume
(since theε-balls around their endpoints must have enough
volume to cover the reachable set), and after taking the
logarithm, dividing byT , and lettingT → 0 we obtain (7) as
the lower bound. The upper bound is obtained by reducing
A to Jordan normal form followed by an argument similar
to the proof of Proposition 2 above applied to each Jordan
block (with the corresponding eigenvalue replacingM ), and
ends up giving the same expression (7).

V. ESTIMATION OVER INFINITE HORIZON

We will first describe a procedure for state estimation of
the system (1) over infinite time horizon. Next, we will show
that the output of this estimation procedure exponentially
converges to the actual state of the system. Finally, we
will give a bound on the bit rate sufficient to achieve this
convergence.

A. Estimation procedure

From this point on in this section, we will discuss a
specific estimation procedure based on quantized state mea-
surements. The norm used here will be the infinity norm
‖ · ‖∞. Accordingly, theB(x, δ) balls will be the hypercubes
and the grids will be sets of hypercubes. We will treat all
previous definitions and results related to entropy in terms
of the infinity norm.

The estimation procedure computes a functionv :
[0,∞) → R

n and an exponentially shrinking envelope
aroundv(t) such that the actual state of the systemξ(x, t) is
guaranteed to be within this envelope. It has several inputs:
(1) a sampling periodTp > 0, (2) a desired exponential
convergence rateα > 0, (3) an initial setK and an initial
partition sized0 > 0, and (4) the constantM defined in
Proposition 2, and (5) a subroutine for computing solutions
of the differential equation (1). In this paper we do not
distinguish between this subroutine for computing solutions
and the actual solutionsξ(·, ·). The procedure works in
roundsi = 1, 2, ... and each round lastsTp time units. In
each round, a new state measurementq is obtained and the
values of three state variablesS, δ, C are updated. We denote
these updated values in theith round asqi, δi, Si, andCi.
Roughly,Si ⊆ R

n is a hypercubic over-approximation of the
state estimate,δi is the radius of the setSi, andCi is a grid
on Si which defines the set of possible state measurements
qi+1 for the next round. We think of the quantized state
measurementsqi as being transmitted from the sensors to the
estimator via a finite-data-rate communication channel, while
the variablesδi, Si, andCi are generated independently and
synchronously on both sides of the channel.

The initial values of these state variables are:δ0 = d0; S0

is a hypercube with center, sayxc, and radiusrc =
diam(K)

2 ,
such thatK ⊆ B(xc, rc); andC0 = grid(S0, δ0e

−(M+α)Tp).
Recall the definition of a grid cover from Section II:C0

is a specific collection of points inRn such thatS0 ⊆
∪x∈C0

B(x, δ0e
−(M+α)Tp).

At the beginning of theith round, the algorithm takes as
input (from the sensors) a measurementqi of the current
state of the system with respect to the coverCi−1 computed
in the previous round. The measurementqi is obtained by
choosing a grid pointc ∈ Ci−1 such that the correspond-
ing δi−1e

−(M+α)Tp -ball B(c, δi−1e
−(M+α)Tp) contains the

current stateξ(x, iTp) of the system. (If there are multiple
grid points satisfying this condition—and this may happen
as Ci−1 is a cover with closed sets having overlapping
boundaries—then one is chosen arbitrarily.) Using this mea-
surement, the algorithm computes the following: (1)vi :
[0, Tp] → R

n, which is an approximation function for the
state over the interval spanning this round, defined as the
solution of the system (1) fromqi, (2) δi is updated as
e−αTpδi−1, (3) Si ⊆ R

n is an estimate of the state after
Tp time, that is, at the beginning of roundi+ 1, and (4)Ci

is a δie
−(M+α)Tp -grid on Si. Specifically,Si is computed

by first evaluating the solutionvi(Tp) = ξ(qi, Tp) of the
system starting fromqi after timeTp, and then constructing
the hypercubeB(vi(Tp), δi). Note that the size of this
hypercube decays geometrically at the ratee−αTp with each
successive round. Recall Section II where we defined grids
and discussed specific ways of constructing them; here the
specific construction is less important than the fact that each
Ci can be computed fromqi by translating and scalingCi−1.

1 i n put : Tp ,α ,K ,d0 ,M ,ξ(·, ·)
2 i = 0 ;
3 δ0 ← d0 ;
4 S0 ← B(xc, rc) ; / / xc i s t h e c e n t e r o fK
5 C0 ← grid(S0, δ0e

−(M+α)Tp) ;
6 whi le ( t r u e )

/ / a t ith round , i > 0
7 i++ ;
8 i n put qi ∈ Ci−1 ;
9 / / measurement o f c u r r e n t s t a t e

10 vi(·)← ξ(qi, ·)|[0, Tp] ;
11 δi ← e−αTpδi−1 ;
12 Si ← B(vi(Tp), δi) ;
13 Ci ← grid(Si, δie

−(M+α)Tp) ;
14 output Si ⊆ R

n, Ci, vi : [0, Tp]→ R
n ;

15 wai t (Tp ) ;

Fig. 1. Estimation procedure.

Consider the beginning of theith round for somei > 0.
From the algorithm it follows that if the current statex is
contained in the estimateSi−1 computed in the last iteration,
then the measurementqi is one of the points in the cover
Ci−1 computed in the last iteration, and further, the error in
the measurement|qi−x| is at most the precision of the cover
which is δi−1e

−(M+α)Tp .
In order to analyze the accuracy of this estimation proce-

dure, we define a piecewise continuous estimation function
v : [0,∞)→ R

n by v(0) := v1(0) and

v(t) = vi(t−(i−1)Tp) ∀ t ∈ ((i−1)Tp, iTp], i = 1, 2, . . .



The next theorem, proved along the lines of [9, Theorem 3],
establishes an exponentially decaying upper bound on the
error between the actual state of the system and the computed
approximating function.

Theorem 3 For any choice of the parametersα, d0, Tp > 0,
the procedure in Figure 1 has the following properties: for
i = 0, 1, 2, . . . and for any initial statex ∈ K,

(a) ξ(x, t) ∈ Si for eacht = iTp, and

(b) ‖ξ(x, t)− v(t)‖∞ ≤ d0e
−αt ∀ t ∈ [iTp, (i+ 1)Tp).

B. Bit rate of estimation scheme and its relation to entropy

Now we estimate the communication bit rate needed by
the estimation procedure in Figure 1. As the statesSi−1

and Ci−1 are maintained and updated by the algorithm in
each round, the only information that is communicated from
the system to the estimation procedure in each round is
the measurementqi. The number of bits needed for that
is log(#Ci), where# stands for the cardinality of a set.
The long-term average bit rate of the algorithm is given

by br(α, d0, Tp) := limj→∞

1

jTp

∑j
i=1 log(#Ci−1). We

proceed to characterize this quantity from the descriptionof
the estimation procedure in Figure 1. We calculate#C0 =
⌈ diam(K)

2d0e
−(M+α)Tp

⌉n. For each successive iterationi, #Ci =

⌈ δi
δie

−(M+α)Tp
⌉n = ⌈e(M+α)Tp⌉n. Thus, br(α, d0, Tp) =

limi→∞
1
Tp

log(#Ci) = (M + α)n/ln 2 is the bit rate uti-
lized by the procedure; it is actually independent ofd0 and
Tp. We state our conclusion as follows.

Proposition 4 The average bit rate used by the estimation
procedure in Figure 1 is(M + α)n/ln 2, whereM is defined
in Proposition 2.

By Proposition 2, the bit rate(M + α)n/ln 2 used by
the above algorithm is an upper bound on the entropy
hest(α,K). We now establish that no other similar algorithm
can perform the same task with a bit rate lower than the
entropyhest(α,K). In other words, the “efficiency gap” of
the algorithm is at most as large as the gap between the
entropy and its upper bound known from Proposition 2.
(Incidentally, combining this result with Proposition 4 we
can arrive at an alternative proof of Proposition 2.)

In order to state this result, we need to formalize the class
of algorithms to which it applies and to which the above
algorithm also belongs. As before, assumed given are the
system (1), the associated constantM and initial setK, as
well as the desired estimation parametersd0 (initial bound)
andα (convergence rate). We also select the sampling period
Tp, which we can think of as a design parameter in the
algorithm. On the encoder side, at each stepi (corresponding
to timet = (i−1)Tp), a codewordqi from a finite set (coding
alphabet)Ci is generated based on the state behavior history
up to this time. On the decoder side, using this codeword
and the previously received codewords, an estimatev(·) of
the state over the next sampling interval((i − 1)Tp, iTp] is

defined. Such encoding-decoding schemes are by now quite
standard (cf. [8, Section 2] and the references therein).

The lower bound on the bit rate in terms of entropy is
given below for an algorithm that uses a constant number of
bits at each round; since in our estimation algorithm#C0

may be higher than#Ci for i ≥ 1, we can think of this
comparison as being valid in “steady state.”

Proposition 5 Consider an algorithm of the above type such
that at each stepi the setCi has the same number of
elements:#Ci = N ∀ i (i.e., the coding alphabet is of
fixed size). If this algorithm achieves the properties listed in
Theorem 3 for an arbitraryd0 > 0, then its bit rate cannot
be smaller thanhest(α,K).

The proof follows along the same lines as the proof
of Statement 1 of Theorem III.1 in [8]. We note that the
algorithm described in [8] performs a similar estimation task
(with α = 0 and in discrete time) and operates at an arbitrary
bit rate above the entropy. However, that algorithm is quite
abstract, since it relies on the existence of a suitable spanning
set and performs block coding over a sufficiently large time
window using sequences from this spanning set. By contrast,
our algorithm given in Section V-A is constructive in that it
utilizes a specific quantization procedure and works with an
arbitrary fixed sampling period.

Remark 2 For the case of a linear system (6), the algorithm
of Section V-A can be modified so that its average bit
rate equals the entropy of the linear system given by the
formula (7). This can be achieved by aligning the gridsCi

used in the algorithm with eigenvectors of the matrixA
and replacing the constantM with eigenvalues ofA (i.e.,
using a different number of quantization points for each
dimension). Constructions of this type for linear systems are
well established in the literature; see, e.g., [16], [17].

VI. M ODEL DETECTION

In this section we briefly discuss how the estimation
algorithm of Figure 1 can be used to distinguish two system
models, provided they are in some sense adequately different.
Consider two continuous-time system models:

ẋ = f1(x), x ∈ R
n, (8)

ẋ = f2(x), x ∈ R
n (9)

where the initial state is in the known compact setK ⊂ R
n

andf1 andf2 areC1 functions satisfying Assumption 1, with
respective constantsM1 andM2 defined as in Proposition 2
(see also the comments immediately before that proposition).
We denote the trajectories of the systems (8) and (9) by
ξ1 : R

n × R≥0 → R
n and ξ2 : R

n × R≥0 → R
n,

respectively. From runtime data, we are interested in dis-
tinguishing whether the true dynamics of the system isf1
or f2. For example, iff1 and f2 correspond to models
with different sets of parameter values, then solutions to this
problem could be used for model parameter identification. As
another example application, consider a scenario wheref1



captures the nominal dynamics of the system andf2 models
a known aberration or failure mode. Then, solution to the
above detection problem can be used for failure detection. It
is straightforward to generalize the solution proposed below
to handle multiple competing models.

ForMs, Ts > 0 we say that the two models are(Ms, Ts)-
exponentially separated(locally) if there exists a constant
εmin > 0 such that for anyε ≤ εmin, for any two states
x1, x2 ∈ R

n with |x1 − x2| ≤ ε, we have|ξ1(x1, Ts) −
ξ2(x2, Ts)| > εeMsTs . The exponential separation property
can be shown to hold over a compact set if the vector fields
of the two models are different at each point in this set; see
also [9] for further discussion and numerical experiments.

In the above definition of exponential separation the norm
can be arbitrary, but in the algorithm below we work with
the infinity norm. With some modifications, the procedure in
Figure 1 can detect models using observations. In Figure 2,
we show the procedure for detecting models. First of all,
before taking the measurement in each round (Tp time) it
makes an additional check. If the current state is not in the
setSi (line 8) computed from the previous round, then the
procedure immediately halts by detecting model 2. If the
current state is inSi, then it proceeds as before and records
a measurementqi of the current state as one of the points
in the coverCi. Secondly, the functionvi (line 13) is now
computed as a solutionξ1(qi, ·) of the system given by (8).
Finally, in computing the radius of the elements in the cover
Ci (line 16), the constantM1 of the system (8) is used.

1 i n put : Tp ,α ,K ,d0 ,M1 ,ξ1(·, ·)
2 i = 0 ;
3 δ0 ← d0 ;
4 S0 ← B(xc, rc) ;
5 C0 ← grid(S0, δ0e

−(M1+α)Tp) ;
6 whi le ( t r u e ) / / a t ith round , i > 0
7 i++ ;
8 i f current state /∈ Si−1

9 output ‘ ‘ second model ’ ’ ;
10 break ;
11 e l s e
12 i n put qi ∈ Ci−1 ;
13 vi(·)← ξ1(qi, ·)|[0, Tp] ;
14 δi ← e−αTpδi−1 ;
15 Si ← B(vi(Tp), δi) ;
16 Ci ← grid(Si, δie

−(M1+α)Tp) ;
17 wai t (Tp ) ;

Fig. 2. Procedure for detecting models.

Theorem 6 Suppose that the true system model is either (8)
or (9) and that the two models are(M1, Tp)-exponentially
separated. Then the procedure in Figure 2 outputs “second
model” if and only if the true model is (9).

The proof is very similar to the proof of [9, Theorem 6]
with M1 replacing the Lipschitz constantL1.

Remark 3 The definition of exponential separation does not
imply that the value of the upper boundεmin is known, and

short of that we cannot conclude for sure that the true model
is the first model even if the state measurements conform
with the constructed boundSi in every round. However, if
we know such an upper boundεmin for which the models are
(M1, Tp)-exponentially separated, then the algorithm can be
made to decisively halt with the output “first model” [9].

VII. C ONCLUSIONS AND FUTURE DIRECTIONS

We introduced two different notions ofestimation entropy
and established their equivalence. We derived an upper
bound of (M + α)n/ln 2 for the estimation entropy of an
n-dimensional nonlinear dynamical system whose Jacobian’s
matrix measure does not exceedM , when the desired expo-
nential convergence rate of the estimate isα. We developed
a procedure for generating exponentially converging state
estimates using an average bit rate that matches this upper
bound on the entropy, and showed that no other similar
state estimation algorithm can work with bit rates lower
than the entropy. Finally, we presented an application of
the estimation procedure in picking out one from a pair of
candidate models using measurement data.
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