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Abstract—We study a notion of estimation entropy for  system over a communication channel. The first such result
continuous-time nonlinear systems, formulated in terms of \was obtained by Nair et al. in [3], where topological feedbac

the number of system trajectories that approximate all other  anyrany for discrete-time systems was defined in terms of
trajectories up to an exponentially decaying error. We also

consider an alternative definition of estimation entropy which car_dm_ahty of open covers in the State_Space' An altereatlv
uses approximating functions that are not necessarily trajec- definition was proposed later by Colonius and Kawan in [4],
tories of the system, and show that the two entropy notions who instead counted the number of “spanning” open-loop
are equivalent. We establish an upper bound on the estimation control functions. The paper [5] summarized the two notions

entropy in terms of the sum of the desired convergence rate 554 established an equivalence between them. Colonius
and an upper bound on the matrix measure of the Jacobian,

multiplied by the system dimension. We describe an iterative S_ubsequently extend_ed the formulation of [4] f_rom _disc—rete
procedure that uses quantized and sampled state measurements time to continuous-time dynamics and from invariance to
to generate state estimates that converge to the true state tite  exponential stabilization in [6]. The survey [7] provides a

desired exponential rate. The average bit rate utilized by this proader overview of control under data rate constraints.

procedure matches the derived upper bound on the estimation In this work we are concerned with the problem of
entropy. We also show that no other algorithm of this type can timating the state of fi fi t h tat
perform the same estimation task with bit rates lower than the estimating the state of a continuous-time system when state

estimation entropy. Finally, we discuss an application of the Measurements are transmitted via a limited-data-rate com-
estimation procedure in determining, from the quantized state munication channel, which means that only quantized and
measurements, which of two competing models of a dynamical sampled measurements of continuous signals are available

system is the true model. We show that under a mild assumption to the estimator. Observability over finite-data-rate cteds
of exponential separation of the candidate models, detection X

always happens in finite time. and its connection to topological entropy has been studied,
most notably by Savkin [8]. Our point of departure in this
I. INTRODUCTION paper is a synergy of ideas from Savkin [8] and Colonius [6].

Entropyis a fundamental notion in the theory of dynamicaf*S N [8], we focus on state estimation rather than control.
systems. Roughly speaking, it describes the rate at whigh thiowever, we follow [6] in that we consider continuous-
uncertainty about the system’s state grows as time evolvdine dynamics and require that state estimates converge at
One can think of this alternatively as the exponential growt® Prescribed exponential rate. As a result, our definition of
rate of the number of system trajectories distinguishabf@Stimation entropgombines some features of the definitions
with finite precision, or in terms of the growth rate of the“sed in [8] and_[6]. We also cons_lder_an alterngtwe definitio
size of reachable sets. Different entropy definitions (oigta ©f €ntropy which uses approximating functions that are
topological and measure-theoretic ones) and relatioashif®t Necessarily trajectories of the system. We show that,
between them are studied in detail in the book [1] angOMewhat surprisingly, the two entropy notions turn out
in many other sources, and continue to be a subject tp be equivalent (Theorem 1). We proce_ed tp establish an
active research in the dynamical systems community. TH&Per bound of( A/ 4-a)n/In2 for the estimation entropy
concept of entropy of course also plays a central role ifif @ n-dimensional nonlinear dynamical system whose
thermodynamics and in information theory (see, e.g., ip [2]72cOPian matrix has matrix measure bounded\bywhen

In the context of control theory, if entropy describes thahe deswe'd' exponential convergence rate of the. estimate is
rate at which uncertainty is generated by the system (whéh(Proposition 2). We note that the same estimation entropy
no measurements are taken), then it should also correspdHions for globally Lipschitz systems were introduced and
to the rate at which information about the system shoul§iudied in our recent paper [9]. When the system’s right-hand
be collected by the controller in order to induce a desiredide is differentiable and not just Lipschitz, our upper ibdu
behavior (such as invariance or stabilization). This lieh ©ON the estimation entropy is sharper than the one given in [9]
not escaped the control community, and suitable entropylich has the Lipschitz constant in place Jof.
definitions for control systems have been proposed andWe_proceed to describe an iterative procedure that uses
related to minimal data rates necessary for controlling th@u@ntized and sampled state measurements to generate state

estimates that converge to the true state at the desired
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round constant. This is achieved by using the quantized stgtnx» _, R is defined byyu(A4) := lim,_,o+ If+eAl -1

measurement at each round to compute a bounding box f&ree, e.g., [13]). One of the basic properties,€ of matrix

the state of the system for the next round. Then, at theassures is that for every matrik we have
beginning of the next round, this bounding box is partitdne

to make a new and more precise quantized measurement of p(A) < A 2

the state. We show that the bounding box is exponentially,y e note that the left-hand side of (2) may be negative
shrinking in time at a rate when the average bit rate utilized o the right-hand side is always positive. The role that

by this procedure matches the upper bound + a)n/In2  auiy measures will play in our analysis of the nonlinear

on the estimation entropy (Theorem 3 and Proposition 4). V\é‘%/stem (1) is enabled by the following assumption, which

also show that no other algorithm of this type can perform thg,, impose throughout the paper, and by the well-known fact
same estimation task with bit rates lower than the eStimatiQstated in Lemma 1 below.

entropy (Proposition 5). In other words, the “efficiency 93P A ssumption 1 The matrix measure of the Jacobian matrix
of our estimation procedure is at most as large as the g%?f is bounded: for som@ € R we have
between the estimation entropy of the dynamical system and '
the above upper bound on it. p(0f/0z)(z) < Ve eR" (3)

In the last part of the paper, we briefly discuss an applica-
tion of the estimation procedure in solving model detectiok€mma 1 Consider the systeifi) satisfying Assumption 1.
problems. Suppose we are given two competing candidalé€n for every pair of initial states:;,z; € R" the
models of a dynamical system and from the quantized sta&@responding solutions ofl) satisfy|¢(z1, 1) — (w2, 1)] <
measurements we would like to determine which one is thfé" |21 — @2/ for all £ > 0.
true model. For example, the different models may arise frorprom the proof of this result (see, e.g., [14], [15]) it can be

different parameter values or they could model “nominalgeq, that instead of requiring the bound (3) to hold globally
and “failure” operating modes of the system. This can b

Bver R” it is enough to know that it holds for all points

viewed as a variant of the standard system identification Phachable fromk at some timet > 0 provided thatk is
model (in)validation problem (see, e.g., [11], [12]) extep a convex set. Moreover, if all solutions (1) starting frdin

unlike in classical results which rely on input/output dataremain in a bounded invariant set thep avith the indicated

here we use quantized state measurements and do not aqﬂj()f : P
S perty always exists (by continuity off/0x).
a probing input to the system. We show that under a gy gefault, the base of all logarithms is 2. When we

mild assumption okxponential separatioof the candidate oo the natural logarithm, we write. For a bounded set
models’ trajectories, a modified version of our estimationy — pn ands > 0. a s-cover is a finite collection of
procedure can always definitively detect the true model iBoiﬁtsz C = {a;} Sleh thatU,,ccB(z:,8) 2 S. For a

finite time (Theorem 6). hyperrectangleS € R™ andd > 0, a ¢-grid is a special
Il. PRELIMINARIES type of 6-cover of S by hypercubes centered at points along
In this paper we work with the continuous-time system axis-parallel planes that ag$ apart. The boundaries of the
0-hypercubes centered at adjacésgrid points overlap. For
i=f(z), 2(0)eK (1) a given setS, there are many possible ways of constructing
where 2 € R” is the state,f : R — R" is a C' specifici-grids. We can choose any strategy for constructing
them without changing the results in this paper. For example
we can construct a special grid on, say, the unit interval.
Then, when working with a general intervdl (a cross-
section ofS in any given dimension), we mapto the unit
assume that these solutions are defined globally in time, i.&t€"val, mark the chosen grid on it, and then map it back to
the system (1) is forward complete. I. We denote theé-grid on S by grid(S, ¢).
We denote byl - | some chosen norm ™. In general [1l. ESTIMATION ENTROPY

definjt_ions a”‘?' results t_his n'orm can bg arbitrary,'bu.t in In this section we review the notion of estimation entropy
specific quantized algorithm implementations we will f'ndrecently introduced in [9]. Let us select a numbep 0 that

it convenient to use theo-norm |[zf|o := maxi<i<n |7i;  defines a desired exponential convergence rate, afdled
in those places, the choice of the-norm will be explicitly o 5 time horizon (which is initially fixed but ultimately

declared. For any € R" andd > 0, B(z,9) C R is the 5 003chesx). For eache > 0, we say that a finite set
closed ball of radiug centered at, that is,B(z,5) = {¥ € 4 functions X — {#1(),...,2n()} from [0,7] to R™ is

R™ : |o —y| < &}; for the co-norm this isrLaX17Lr\ypercube. (T, e, a, K)-approximatingif for every initial statex € K
Let [|- || be the induced matrix norm dR™*" correspond- i are exists some functiafy(-) € X such that

ing to a chosen norm| onRR™. Then thematrix measure :
|€(2,t) — 24(t)| < ee™ ! vVt e [0,T]. (4)

(continuously differentiable) function, and C R”™ is a
known compact set of initial states. L&t K x R>o — R"
denote the trajectories or solutions of (1), so th@t, t) is
the solution from the initial state evaluated at time. We

1We will later impose a condition on the Jacobianfofjuaranteeing that
the distance between solutions of (1) grows at most expaibntand this 2With a slight abuse of terminology, we take the elements of &ty
implies forward completeness. be the centers of the balls coverisgand not the balls themselves.



Let ses(T, £, v, K) denote the minimal cardinality of such aalso ses(T, ¢, v, K), is finite for everye > 0. This does not
(T, e, o, K)-approximating set, and defimstimation entropy in principle precludehly (o, K) and hes{a, K') from being

as infinite (the supremum over positive could still be o).
hesf{, K) := lim Tim 1 log sest(T €, t, K). However, vye.will see next that this does not happen if the
NOT—o0 T system satisfies Assumption 1.

It is easy to see that instead bifn.\ o we could equiva-
lently write sup, . o, becaus&es(T’, €, o, K') grows ass — 0 ) ) _
for fixed T, o, K. Intuitively, since ses; corresponds to the  IN this section, we establish an upper bound on the
minimal number of functions needed to approximate the staftimation entropy of (1). This entropy bound is indepemden
with desired accuracyhes is the average number of bits of the choice of the initial sef; without significant loss
needed to identify these approximating functions. Therinn®f generality, we assume in the sequel tiatis a set of
Tim extracts the base-2 exponential growth rates@f with ~ POsitive measure and “regular” shape, such as a hypercube,
time and the outer limit gives the worst case ove 0. large enough to contain all initial conditions of interest.

As a special case, further considered below, we can defineThe result given below relies on the global boupd
the #;(-)'s to be trajectories¢(z, ) of the system from ON the matrix measure of the Japob!an bep_roylded by
different initial states. Thenses; corresponds to the number ASsumption 1. While this assumption is restrictive, we note
of quantization points needed to identify the initial state the following points. First, as we commented after Lemma 1,
and hest gives a measure of the long-term bit rate needed fdpis can be replaced by a bound over the reachable set, which
communicating sensor measurements to the estimator. \Rdtomatically exists if the reachable set is bounded. Skcon
pursue this connection in more detail in Section V. We not@€ are not assuming that < 0, i.e., the system need not

IV. ENTROPY BOUNDS

that the norm in the above definition can be arbitrary. be contractive. Finally, it is useful to compare the entropy
bound given here to the one established in [9], which applies
A. Alternative entropy notion to globally Lipschitz (but not necessarily') systems and

In the above definition, the functions;(-) are arbitrary |00ks similar but has the Lipschitz constanof f in place of
functions of time and not necessarily trajectories of thé- Whenf is C', the bound derived here is sharper because
system (1). If we insist on using system trajectories, thethe Lipschitz constant is equal to the induced norm of the
we obtain the following alternative definition: a finite sdt o Jacobian and so, in light of (2), we haye< L.
points S = {z1,...,an} C K is (T, ¢, o, K)-spanningif
for every initial stater € K there exists some point; € §  Proposition 2 For the systen(1) satisfying Assumption 1,

such that the corresponding solutions satisfy the estimation entropyies{a, K) is finite and does not
exceed M + a)n/In2, where M := max{f, —a}.
1€(z,t) — &(24,t)| < g™ vVt e [0,T]. (5)
The proof proceeds along the lines of the proof of Propo-

Letting s¢o(T' €, o, K) denote the minimal cardinality of gition 2 in [9] (see also [14] and the references therein for
such a7 ¢, a, K)-spanning set, we could define estimation,jier results along similar lines).

entropy differently as
Remark 1 In the case when (1) is a linear system

— 1

hes(a, K) := lim lim —logsze(T, ¢, a, K).

eNO0T—o00 T i = Ax 6)
Since every (T,¢,«, K)-spanning set gives rise to a o ] )
(T, e, a, K)-approximating set viai;(t) := &(z;,t), and the result of Proposition 2 can be sharpened. Namely, in this
since entropy is determined by the minimal cardinality of@S€ Oné can show that the exact expression (not just an
such a set, it is clear thabs(T’ =, o, K) < sigT.¢, v, K) upper bound) for the estimation entropy is
for all 7'c, o, K, and thereforehes(er, K) < hggfar, K) 1/(In2) ) (ReXi(4) +a) (7
for all a, K. Interestingly, this last inequality is actually ReA (> o
always equality. In other words, there is no advantage— ' )
as far as estimation entropy is concerned—in using arffhere Re\;(A) are the real parts of the eigenvalues Af

approximating functions (even possib'y discontinuous$neThiS follows from results that.are essentia”y well knOWn,
other than system trajectories. although not well documented in the literature (especialty

continuous-time systems); for discrete-time systems ithis
Theorem 1 For everya > 0 and every compact sét we Shown, e.g., in [8]. Namely, since the flowdér, t) = ?A_t_x’
have hes(a, K) = hig(a, K). the volume of the reachable set at tirfiefrom the initial

setK is de{e“T)vol(K) which by Liouville’s trace formula

This result was proved in [9]. By compactnessfofind by equalse™)Tvol(K). The decaying factor—** on the right-

the property of continuous dependence of solutions of (1) dmand side of (4) can be canceled by multiplying &% on
initial conditions, for givere, o, T' there exists @ > 0 such both sides; the effect of doing this on the left-hand side
that (5) holds whenever andx; satisfy |x — ;| < 6. From is that of replacing solutions of = Ax by solutions of
this it immediately follows thats;(T, ¢, o, K), and hence & = (A + al)x, and suitably modifying the approximating



functions. Projecting onto the unstable subspacd efal, is a specific collection of points iIfR™ such thatS, C
we can refine the trace to be the sum of only unstable,cc, B(x, dpe~ M +)Tr),

eigenvalues of this matrix. The number of approximating At the beginning of thé'” round, the algorithm takes as
functions must be at least proportional to the above volumeaput (from the sensors) a measurementof the current
(since thes-balls around their endpoints must have enoughktate of the system with respect to the co@er; computed
volume to cover the reachable set), and after taking tha the previous round. The measuremeantis obtained by
logarithm, dividing byT", and lettingl” — 0 we obtain (7) as choosing a grid point € C;_; such that the correspond-
the lower bound. The upper bound is obtained by reducingg §;_ e~ M+)Tr-pall B(c,§;_ e~ (M+)Tr) contains the
A to Jordan normal form followed by an argument similacurrent state(x,iT,,) of the system. (If there are multiple
to the proof of Proposition 2 above applied to each Jordagrid points satisfying this condition—and this may happen
block (with the corresponding eigenvalue replacing, and as C;_; is a cover with closed sets having overlapping

ends up giving the same expression (7). boundaries—then one is chosen arbitrarily.) Using this mea-
surement, the algorithm computes the following: () :
V. ESTIMATION OVER INFINITE HORIZON [0,T,] — R™, which is an approximation function for the

O?;tate over the interval spanning this round, defined as the

We will first describe a procedure for state estimation luti f th ¢ 1) f 2 5 i dated
the system (1) over infinite time horizon. Next, we will showS?u ion of the system (1) fron, (2) 4 is updated as

aTy, s, . n i H
that the output of this estimation procedure exponentia\IAI%v 6i-1, (3) S; € R™ is an estimate of the state after

converges to the actual state of the system. Finally, t'me;}?ﬂ;)sf at t_he beginning qf. rouridt 1.’ and (4)C;
will give a bound on the bit rate sufficient to achieve thi:{bS a ;e »-grid on S;. Specifically, S; is computed
convergence. y first evalgatmg the solu§|0mi(Tp) = {(q;,Tp) of thg
system starting frong; after time7},, and then constructing
the hypercubeB(v;(T},),d;). Note that the size of this
hypercube decays geometrically at the rate”» with each
From this point on in this section, we will discuss asuccessive round. Recall Section Il where we defined grids
specific estimation procedure based on quantized state mgad discussed specific ways of constructing them; here the
surements. The norm used here will be the infinity normpecific construction is less important than the fact thahea

[| - [loo- Accordingly, theB(z, §) balls will be the hypercubes ¢; can be computed from by translating and scaling;_; .
and the grids will be sets of hypercubes. We will treat all

previous definitions and results related to entropy in termd input: T, ,a,K ,do,M ()
of the infinity norm. 2 i=0;
The estimation procedure computes a function : 3 do <= do;
[0,00) — R™ and an exponentially shrinking envelope 4 So <= B(zc,7c); I/ x. is the center ofK
aroundu(t) such that the actual state of the system, t)is 5 Co « grid(So, doe~ M+ Tr);
guaranteed to be within this envelope. It has several input$ While (true)

A. Estimation procedure

(1) a sampling periodl,, > 0, (2) a desired exponential /1 at i round, i>0

convergence rater > 0, (3) an initial setK and an initial 7 i+ +;

partition sized, > 0, and (4) the constand/ defined in 8 input g € Ci_1;

Proposition 2, and (5) a subroutine for computing solutions? /I measurement of current state

of the differential equation (1). In this paper we do nolO0  vi(-) + &(q,-)|[0, T}p];

distinguish between this subroutine for computing sohgio 11 &; < e *77d; 1

and the actual solutiong(-,-). The procedure works in 12 Si = B(vi(1}),6:);

roundsi = 1,2, ... and each round last§, time units. In 13 C; « grid(S;, §;e~(MF)Tr);

each round, a new state measuremgeig obtained and the 14 output S; CR", Cy,v; : [0,T,] — R";

values of three state variabl8sd, C are updated. We denotel5 wait (7,);

these updated values in ti& round asgy;, d;, S;, and C;. Fig. 1. Estimation procedure.

Roughly,s; € R" is a hypercubic over-approximation of the ¢, jqer the beginning of th#&" round for somei > 0.
state estl_mataii 1S the radius of the seﬁz andC; is a grid From the algorithm it follows that if the current stateis
on S; which defines the set of possible state measurements, i-ined in the estimatg,_; computed in the last iteration,
gi+1 for the next roqnd. we th.mk of the quantized Stalfhen the measuremeni is one of the points in the cover
megsuremgnt@ as being transmitted frqm t.he Sensors to th%?i,l computed in the last iteration, and further, the error in
estimator via a finite-data-rate communication channeilewh | measuremen; — z| is at most the precision of the cover
the variables);, S;, andC; are generated independently an hich is 51'—16_(M1+"‘)T”-

synchrgqqusly on both sides of the channel. In order to analyze the accuracy of this estimation proce-
The initial values of these state variables akg= dy; So

. . _ diam(K) dure, we define a piecewise continuous estimation function
is a hypercube with center, say, and radius-, =

' : [0, — R™ by v(0) := v1(0) and
such thatk’ C B(z.,r.); andCy = grid(So, (Soe*(MJFO%TP). v:[0,00) y v(0) := 1 (0)
Recall the definition of a grid cover from Section iy  v(t) = v;(t—(i—1)T,) Vte ((i—1)Ip,iT,), i=1,2,...




The next theorem, proved along the lines of [9, Theorem 3{lefined. Such encoding-decoding schemes are by now quite
establishes an exponentially decaying upper bound on ttandard (cf. [8, Section 2] and the references therein).
error between the actual state of the system and the computed’he lower bound on the bit rate in terms of entropy is
approximating function. given below for an algorithm that uses a constant number of
bits at each round; since in our estimation algoriti#a,
Theorem 3 For any choice of the parameters dy, 7, > 0, ~may be higher thagtC; for i > 1, we can think of this
the procedure in Figure 1 has the following properties: forcomparison as being valid in “steady state.”
1=0,1,2,... and for any initial stater € K,
Proposition 5 Consider an algorithm of the above type such
(a) {(z,t) € S; for eacht =T, and that at each stepi the setC; has the same number of
(b) |€(z,t) —v(t)|oo < doe™ ™" YVt € [iTy, (i + 1)T}). elements:#C; = N Vi (i.e., the coding alphabet is of
) o ) ) fixed size). If this algorithm achieves the properties tiste
B. Bit rate of estimation scheme and its relation to entropyneorem 3 for an arbitraryly > 0, then its bit rate cannot
Now we estimate the communication bit rate needed blye smaller thames(a, K).
the estimation procedure in Figure 1. As the states; .
and C;_, are maintained and updated by the algorithm in The proof follows along the same lines as the proof
each round, the only information that is communicated frorf! Statement 1 of Theorem Ill.1 in [8]. We note that the

the system to the estimation procedure in each round 9°rithm described in [8] performs a similar estimatioskia
the measuremeny;. The number of bits needed for that (with o = 0 and in discrete time) and operates at an arbitrary

is log(#C;), where # stands for the cardinality of a set. bit rate above the entropy. However, that algorithm is quite

The long-term average bit rate of the algorithm is giverrflbstract, since it relies on thg existence ofg;uitablenipgp
— , set and performs block coding over a sufficiently large time
by br(a,d(),Tp) = hmj_,oo z:l log(#CZ_l) We

E window using sequences from this spanning set. By contrast,
proceed to characterize this quantity from the descriptibn our algorithm given in Section V-A is constructive in that it
the estimation procedure in Figure 1. We calculg€, = utilizes a specific quantization procedure and works with an
[%1”. For each successive iteratian #C; =  arbitrary fixed sampling period.

[ty I* = [eMFTT]" Thus, b,(a,do, T;) =
lim;_ 00 7 log(#C;) = (M + a)n/In2 is the bit rate uti-
lized by the procedure; it is actually independentdgfand
T,. We state our conclusion as follows.

Remark 2 For the case of a linear system (6), the algorithm
of Section V-A can be modified so that its average bit
rate equals the entropy of the linear system given by the
formula (7). This can be achieved by aligning the grids
used in the algorithm with eigenvectors of the matrix
Mnd replacing the constart/ with eigenvalues ofA (i.e.,
using a different number of quantization points for each
dimension). Constructions of this type for linear systemes a

By Proposition 2, the bit ratéM + a)n/In2 used by well established in the literature; see, e.g., [16], [17].
the above algorithm is an upper bound on the entropy VI
hest(cv, K'). We now establish that no other similar algorithm . . i . o
can perform the same task with a bit rate lower than the !N this section we briefly discuss how the estimation
entropy hes{, K). In other words, the “efficiency gap” of algorithm of Flgure 1 can pe used to distinguish two system
the algorithm is at most as large as the gap between tﬁéodgls, provided they are in some sense adequately differen
entropy and its upper bound known from Proposition 2CONSider two continuous-time system models:
(Incidentally, combining this result with Proposition 4 we i=fi(z), zeR", (8)
can arrive at an alternative proof of Proposition 2.) &= fo(z), ©€R" ©)

In order to state this result, we need to formalize the class ’
of algorithms to which it applies and to which the abovewvhere the initial state is in the known compact setC R”
algorithm also belongs. As before, assumed given are tlaadf,; andf, areC'! functions satisfying Assumption 1, with
system (1), the associated constaitand initial setK, as respective constants/; and M, defined as in Proposition 2
well as the desired estimation parametésg(initial bound) (see also the comments immediately before that propogition
anda (convergence rate). We also select the sampling peridtfe denote the trajectories of the systems (8) and (9) by
T,, which we can think of as a design parameter in th¢; : R™ x Ry — R™ and & : R" x Ry — R7,
algorithm. On the encoder side, at each stémrresponding respectively. From runtime data, we are interested in dis-
to timet = (:—1)7},), a codewordy; from a finite set (coding tinguishing whether the true dynamics of the systenyiis
alphabet)C; is generated based on the state behavior histoor f,. For example, if f; and f; correspond to models
up to this time. On the decoder side, using this codewondith different sets of parameter values, then solution$i® t
and the previously received codewords, an estimétg of  problem could be used for model parameter identification. As
the state over the next sampling intervéd — 1)7},,47,] is another example application, consider a scenario wifere

Proposition 4 The average bit rate used by the estimatio
procedure in Figure 1 i§M + «)n/In 2, where) is defined
in Proposition 2.

. MODEL DETECTION



captures the nominal dynamics of the system #ndhodels short of that we cannot conclude for sure that the true model
a known aberration or failure mode. Then, solution to thé the first model even if the state measurements conform
above detection problem can be used for failure detectton.Wwith the constructed bound; in every round. However, if
is straightforward to generalize the solution proposeawel we know such an upper boundg,, for which the models are
to handle multiple competing models. (M,,T,)-exponentially separated, then the algorithm can be

For M, T, > 0 we say that the two models afé/;,7s)- made to decisively halt with the output “first model” [9].
exponentially separate@ocally) if there exists a constant
emn > 0 such that for anye < emin, for any two states VIlI. CONCLUSIONS AND FUTURE DIRECTIONS
21,9 € R™ with |21 — 29| < &, we have|& (z1,Ts) — We introduced two different notions efstimation entropy
& (22, Ty)| > ce™=Ts. The exponential separation propertyand established their equivalence. We derived an upper
can be shown to hold over a compact set if the vector fieldsound of (A + a)n/In2 for the estimation entropy of an
of the two models are different at each point in this set; see-dimensional nonlinear dynamical system whose Jacobian’s
also [9] for further discussion and numerical experiments. matrix measure does not excegfl when the desired expo-

In the above definition of exponential separation the normential convergence rate of the estimatevisNe developed
can be arbitrary, but in the algorithm below we work witha procedure for generating exponentially converging state
the infinity norm. With some modifications, the procedure irestimates using an average bit rate that matches this upper
Figure 1 can detect models using observations. In Figure Bound on the entropy, and showed that no other similar
we show the procedure for detecting models. First of alktate estimation algorithm can work with bit rates lower
before taking the measurement in each roufigl fme) it than the entropy. Finally, we presented an application of
makes an additional check. If the current state is not in thée estimation procedure in picking out one from a pair of
set S; (line 8) computed from the previous round, then theandidate models using measurement data.
procedure immediately halts by detecting model 2. If the
current state is irb;, then it proceeds as before and records
a measuremeny; of the current state as one of the points [1]
in the coverC;. Secondly, the function; (line 13) is now 2]
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