
Parameterized Verification of Distributed Cyber-
Physical Systems

An Aircraft Landing Protocol Case Study

Taylor Johnson and Sayan Mitra

University of Illinois at Urbana-Champaign

ICCPS 2012, CPSWeek, Beijing

• The Small Aircraft Transportation
protocol (SATS) [Abbott et al. NASA
Report 2002]

• Distributed traffic control for
increasing general aviation access to
small airports with minimal
centralized infrastructure

• Features of the system/model
– (Cyber) Location, sequence of agents

– (Physical) Motion of agents

– (Distributed) Ordering data-structure is
spread across multiple aircrafts

Distributed air-traffic control protocol

Holding Region 2
Holding Regions

Base Region Base Region

Fin
al R

egio
n

Runway

Holding Region 1 Holding Region 1

Parameterized Systems and Verification

• Goal: Verify that SATS guarantees safety and progress even if
arbitrarily many aircraft participate in the protocol

• Parameterized verification
– For every instantiation of such a system, verify some property P

regardless of the number of agents

– ∀𝑁 ∈ ℕ. 𝒜 𝑁 ≜ 𝒜1 ∥ 𝒜2 ∥ ⋯ ∥ 𝒜𝑁⊨ 𝑃(N)

– Example: P N : ∀𝑖, 𝑗 ∈ [𝑁], 𝑥𝑖 − 𝑥𝑗 > 𝑆
• No two aircraft ever collide, no two processes enter a critical section

simultaneously

• Parameterized systems are all around …

– Aircraft and vehicles in distributed air traffic control
– Collaborative Apps on Mobile phones, e.g., Geocasting and Sensing
– Robotic swarms (platooning, flocking)
– Networked medical devices

Related Work: Automatic parameterized verification

• Finite-state automata: Undecidable in general [Apt and Kozen, 1986]

• Timed automata

– Decidable with a single real-valued clock, finite number of integer clocks
[Abdulla et al. 2001-04]

– Undecidable with two or more real-valued clocks, urgency, universal guards
[Abdulla et al. 2001-07]

• Model checking:

– Counter abstraction [Delzanno 2000], Environment abstraction [Clarke,
Talupur, and Veith 2006], Network invariants [Wolper, Lovinfosse, 1990],
Small model theorems [Pnueli et al. 2001] [Johnson & Mitra, FORTE 2012]

• Theorem-prover based applications

– SATS: Discrete abstractions [Munoz, Dowek, and Carreno 2004], Hybrid
versions [Munoz and Dowek 2005-06], [Umeno and Lynch 2007]

– Adaptive cruise control [Loos, Platzer, et al. 2011]

– Fischer’s mutual exclusion [Dutertre and Sorea 2004]

• MCMT: Tool for backward reachability algorithm [Ghilardi et al. IJCAR 2008],
Timed automata [Carioni et al. 2010]

SATS Overview

• Automaton model of each aircraft Ai

– Region of airspace

– Position within region (xi)

– Sequence number (si)

– Miss direction (mi)

• Central coordinator assigns unique
sequence numbers

• Aircraft coordinate with one another
to make landing attempts while
ensuring separation assurance

• Communication modeled as
synchronized transitions that
atomically read/write the state of
two aircrafts (and coordinator)

Holding Region 2
Holding Regions

Base Region Base Region

Fin
al R

egio
n

Runway

Holding Region 1 Holding Region 1

Hybrid Automaton Model for an aircraft in SATS

Hold 3k R

LEZ R Flying

Hold 2k L Hold 2k R

LEZ L

Hold 3k L

mi = R; nexti = tail; tail:= i

xi ≥ LB

Runway

xi ≥ LFINAL

(nexti = ⊥) ∨ (nexti = j ∧ 𝑥𝑗 ≥ 𝑆)

xi ≥ LF

∧ 𝑚𝑖 = 𝑅

mi = L; nexti = tail; tail:= i

Direct verification results

SATS
Constant
velocity

• Automatic translation from

Simulink to UPPAAL

• Verification of properties using

UPPAAL

(4 aircrafts 10 mins; 5 aircrafts ~

1 hour)

SATS

Simplified

• Automatic translation from

Simulink to HyTech for a simpler

model with no sequences

• Verification of properties using

HyTech (4 aircrafts, 155 sec)

Parameterized verification: Symbolic computation for
entire family of systems:
Symbolic representation of states, transitions, unsafe sets

Variables and Symbolic States
Variables

• qi : { Fly, H3KL, BaseL, …, Runway} Control location for Ai

• xi : ℝ Position of Ai within qi

• nexti : ℕ⊥ Sequence number

• 𝑚𝑖: {Left, Right} Miss side

• tail : ℕ⊥ Global counter airport module

Parametric predicates

• General: 𝜙𝐼(𝑁) ≜ ∀𝑖, 𝑗, 𝑘, … ∈ 𝑁 . 𝜓𝐼 , where 𝜓𝐼 is a propositional formula

• Initial condition: Init(𝑁) ≜ ∀𝑖 ∈ 𝑁 . 𝑞𝑖 = Fly

• Separation:Sep N ≜ ∀𝑖, 𝑗 ∈ 𝑁 , 𝑖 ≠ 𝑗 ∧ 𝑞𝑖 , 𝑞𝑗 ∈ Base, Runway, Missed ∧

(𝑛𝑒𝑥𝑡𝑖 = 𝑗) ⇒ 𝑥𝑗 − 𝑥𝑖 ≥ 𝑆

• Unsafe (negation): ∃𝑖, 𝑗 ∈ 𝑁 , (𝑖 ≠ 𝑗 ∧ 𝑞𝑖 , 𝑞𝑗 ∈ Base, Runway, Missed ∧

(𝑛𝑒𝑥𝑡𝑖 = 𝑗) ∧ 𝑥𝑗 − 𝑥𝑖 < 𝑆

• General: 𝜙𝑏 ≜ ∃𝑖, 𝑗, 𝑘, … ∈ 𝑁 . 𝜓𝑏 for some propositional formula 𝜓𝑏
over the variables of 𝒜𝑖

Discrete Transitions
• For each location pair a to b the transition

– 𝑇 𝑁, 𝐹𝑙𝑦, 𝐻𝑜𝑙𝑑3𝐿 ≜ ∃ 𝑖 ∈ 𝑁
• 𝑞𝑖= Fly ∧

• 𝑞𝑖
′ = Hold3L ∧ 𝑛𝑒𝑥𝑡𝑖

′ = 𝑡𝑎𝑖𝑙 ∧ 𝑡𝑎𝑖𝑙′ = 𝑖 ∧

• ∀ 𝑗 ∈ [𝑁]: 𝑗 ≠ 𝑖 ⇒ 𝑛𝑒𝑥𝑡𝑗
′ = 𝑛𝑒𝑥𝑡𝑗 ∧ 𝑞𝑗

′ = 𝑞𝑗

• 𝑇𝑟𝑎𝑗𝑠(𝑁): ∃ 𝑡 > 0, ∀ 𝑗 ∈ 𝑁 :

– (𝑞𝑖 = Base ⇒ ∀ 𝑡′ ≤ 𝑡: 𝑥𝑗 + 𝑡′ = 𝐵 ⇒ 𝑡′ = 𝑡 ∧

– (𝑞𝑖 = Final ⇒ ∀ 𝑡′ ≤ 𝑡: 𝑥𝑗 + 𝑡′ = 𝐿 ⇒ 𝑡′ = 𝑡 ∧

– … ∧

– 𝑥′𝑗 = 𝑥𝑗 + 𝑡

• 𝑇 𝒙, 𝒙′ =
𝑇 𝑁, 𝐹𝑙𝑦, 𝐻𝑜𝑙𝑑3𝐿 ∨ 𝑇 𝑁, 𝐹𝑙𝑦, 𝐻𝑜𝑙𝑑3𝑅 ∨
𝑇 𝑁, 𝐻𝑜𝑙𝑑3𝐿, 𝐻𝑜𝑙𝑑2𝐿 ∨ … ∨ 𝑇𝑟𝑎𝑗𝑠(N)

• Time transitions

• Transition relation is the disjunction of all
discrete transitions and the time transition

Fly

Hold3L

nexti = tail;

tail:= i

xi ≥ B

Reachability Algorithm

BR = ¬ 𝑆 // S: property

While

 If 𝐵𝑅 ∧ 𝐼𝑛𝑖𝑡 is SAT then return UNSAFE

 // Safety check

 Else BR = BR ∨ ∃ x’: T x, x′ /\ BR(x’)
 𝑃’ = 𝑃 ∨ 𝐵𝑅

 If ¬(P’⟹ 𝑃) is UNSAT then return SAFE

 // Fixpoint check

 Else P = P’ repeat

Every inductive invariant that is proved is conjuncted to the
next invariant for strengthening

When is termination guaranteed?

• Depends on the format of the safety property

• If it is of the form ∃i ∈ [N]:P(i) and Pre
computation is also of the form ∃i ∈ [N]:Q(i)

• And, there is only discrete interaction amongst
Ai then we can reach a fixpoint

• For SATS, several properties bound the
number of aircrafts that can actually be
present in the system

Verification Methodology

• Model Checker Modulo Theories (MCMT)
– Performs satisfiability checks of formulas using the satisfiability

modulo theories (SMT) solver Yices

– Supports real parameters (needed for timed dynamics)

• Provide a list of properties
– Main property is separation assurance

– Python script calls MCMT to prove a property from this list

– If the property is established, script assumes this property in
subsequent calls to MCMT, then tries another property in the list

Properties and Runtimes

Property Runtime (s) Memory (MB)

No more than four aircraft in system 25.95 10

No two aircrafts violate separation 283.08 32

No more than two aircraft on the left (right) 24.50 5

At most one aircraft in each holding zone 0.81 4

No more than two aircraft on a missed
approach on the left (right)

491.61 274

Conclusions & Ongoing Work

• SATS: A Benchmark for distributed cyber-physical system

• Our modeling framework: Networks of Hybrid Automata with
discrete (atomic) interactions

• Verification: Parameterized backward reachability

– Derived bounds aid termination

• Challenges: Termination & Liveness in parameterized systems

• Ongoing work:

– Small Model Results [Forte/FMOODs paper to appear]

– Z3-based tool implementation

– Application to mobile peer-to-peer applications

Questions?

𝒜𝑖: Aircraft Hybrid Automaton

mr

xM

fly

h3r h3l

h2r h2l

bl

xB

fin

xF

run taxi

ml

xM

τflyh3r τflyh3l

τ h3rh2r τ h3lh2l

τ mlh3l

τ mlh2l τ mrh2r

τ mrh3r

τ h2rbr τ h2lbl

τ brf τ blf

τ fmr τ fml

τ fr

τ rtaxi

br

xB

Example: Fischer’s Protocol

• Timed mutual exclusion protocol
– 4 states: initial, waiting, trying, critical section
– 1 real-valued clock per process
– 1 globally shared (atomic) variable, v, ranging over process ids
– Process ids: {1, …, n}
– Safety property: at most one process is in critical section

init wait try cs

v := 0

v ≠ i

v = 0
ti := 0

ti < 1
ti := 0
v := i

v = i  ti > 1

initiate choose enter

exit fail

Termination Example

• Parameterized finite state machines

Termination Example (cont)

