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• The Small Aircraft Transportation 
protocol (SATS) [Abbott et al. NASA 
Report 2002] 

 

• Distributed traffic control for 
increasing general aviation access to 
small airports with minimal 
centralized infrastructure 

 

• Features of the system/model 
– (Cyber) Location, sequence of agents 

– (Physical) Motion of agents 

– (Distributed) Ordering data-structure is 
spread across multiple aircrafts 

 

Distributed air-traffic control protocol 
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Parameterized Systems and Verification 

• Goal: Verify that SATS guarantees safety and progress even if 
arbitrarily many aircraft participate in the protocol 
 

• Parameterized verification 
– For every instantiation of such a system, verify some property P 

regardless of the number of agents 

– ∀𝑁 ∈ ℕ. 𝒜 𝑁 ≜  𝒜1 ∥ 𝒜2 ∥ ⋯ ∥ 𝒜𝑁⊨ 𝑃(N) 

– Example: P N : ∀𝑖, 𝑗 ∈ [𝑁], 𝑥𝑖 −  𝑥𝑗 > 𝑆 
• No two aircraft ever collide, no two processes enter a critical section 

simultaneously 

 
• Parameterized systems are all around … 

– Aircraft and vehicles in distributed air traffic control  
– Collaborative Apps on Mobile phones, e.g., Geocasting and Sensing 
– Robotic swarms (platooning, flocking)  
– Networked medical devices  



Related Work: Automatic parameterized verification 

 
• Finite-state automata: Undecidable in general [Apt and Kozen, 1986] 

• Timed automata 

– Decidable with a single real-valued clock, finite number of integer clocks 
[Abdulla et al. 2001-04] 

– Undecidable with two or more real-valued clocks, urgency, universal guards 
[Abdulla et al. 2001-07] 

• Model checking: 

– Counter abstraction [Delzanno 2000], Environment abstraction [Clarke, 
Talupur, and Veith 2006], Network invariants [Wolper, Lovinfosse, 1990], 
Small model theorems [Pnueli et al.  2001] [Johnson & Mitra, FORTE 2012] 

• Theorem-prover based applications 

– SATS:  Discrete abstractions [Munoz, Dowek, and Carreno 2004], Hybrid 
versions [Munoz and Dowek 2005-06], [Umeno and Lynch 2007] 

– Adaptive cruise control [Loos, Platzer, et al. 2011] 

– Fischer’s mutual exclusion [Dutertre and Sorea 2004] 

• MCMT: Tool for backward reachability algorithm [Ghilardi et al. IJCAR 2008], 
Timed automata [Carioni et al. 2010] 



SATS Overview 

• Automaton model of each aircraft Ai 

– Region of airspace 

– Position within region (xi) 

– Sequence number (si) 

– Miss direction (mi) 

• Central coordinator  assigns unique 
sequence numbers 

• Aircraft coordinate with one another 
to make landing attempts while 
ensuring separation assurance 

• Communication modeled as 
synchronized transitions that 
atomically read/write the state of 
two aircrafts (and coordinator) 
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Hybrid Automaton Model for an aircraft in SATS 

Hold 3k R 
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mi = R; nexti = tail; tail:= i 

  

xi ≥ LB 

Runway 

xi ≥ LFINAL 

(nexti  = ⊥) ∨ (nexti = j ∧ 𝑥𝑗 ≥ 𝑆) 

xi ≥ LF  

∧  𝑚𝑖 = 𝑅 

mi = L; nexti = tail; tail:= i 



Direct verification results 

SATS 
Constant 
velocity 

 

• Automatic translation from 

Simulink to UPPAAL  

 

• Verification of properties using 

UPPAAL  

(4 aircrafts 10 mins; 5 aircrafts ~ 

1 hour) 

SATS 

Simplified 

 

• Automatic translation from 

Simulink to HyTech for a simpler 

model with no sequences 

 

• Verification of properties using 

HyTech (4 aircrafts, 155 sec) 

Parameterized verification: Symbolic computation for  
entire family of systems:  
Symbolic representation of states, transitions, unsafe sets 



Variables and Symbolic States 
Variables 

• qi : { Fly, H3KL, BaseL, …, Runway}  Control location for Ai 

• xi : ℝ     Position of Ai within qi 

• nexti : ℕ⊥    Sequence number 

• 𝑚𝑖: {Left, Right}   Miss side 

• tail :   ℕ⊥     Global counter airport module 

Parametric predicates 

• General: 𝜙𝐼(𝑁) ≜ ∀𝑖, 𝑗, 𝑘, … ∈ 𝑁 . 𝜓𝐼 , where  𝜓𝐼 is a propositional formula 

• Initial condition: Init(𝑁) ≜ ∀𝑖 ∈ 𝑁 . 𝑞𝑖 = Fly 

• Separation:Sep N ≜ ∀𝑖, 𝑗 ∈ 𝑁 , 𝑖 ≠ 𝑗 ∧ 𝑞𝑖 , 𝑞𝑗  ∈ Base, Runway, Missed ∧

(𝑛𝑒𝑥𝑡𝑖 = 𝑗) ⇒ 𝑥𝑗 − 𝑥𝑖 ≥ 𝑆 

• Unsafe (negation): ∃𝑖, 𝑗 ∈ 𝑁 , (𝑖 ≠ 𝑗 ∧ 𝑞𝑖 , 𝑞𝑗  ∈ Base, Runway, Missed ∧

(𝑛𝑒𝑥𝑡𝑖 = 𝑗) ∧ 𝑥𝑗 − 𝑥𝑖 < 𝑆 

• General: 𝜙𝑏 ≜ ∃𝑖, 𝑗, 𝑘, … ∈ 𝑁 . 𝜓𝑏 for some propositional formula 𝜓𝑏 
over the variables of 𝒜𝑖 



Discrete Transitions 
• For each location pair a to b the transition 

– 𝑇 𝑁, 𝐹𝑙𝑦, 𝐻𝑜𝑙𝑑3𝐿 ≜ ∃ 𝑖 ∈ 𝑁  
•  𝑞𝑖= Fly ∧  

• 𝑞𝑖
′ = Hold3L ∧  𝑛𝑒𝑥𝑡𝑖

′ = 𝑡𝑎𝑖𝑙 ∧ 𝑡𝑎𝑖𝑙′ = 𝑖 ∧ 

• ∀ 𝑗 ∈ [𝑁]: 𝑗 ≠ 𝑖 ⇒ 𝑛𝑒𝑥𝑡𝑗
′ = 𝑛𝑒𝑥𝑡𝑗 ∧ 𝑞𝑗

′ = 𝑞𝑗 

• 𝑇𝑟𝑎𝑗𝑠(𝑁): ∃ 𝑡 > 0, ∀ 𝑗 ∈ 𝑁 : 

– (𝑞𝑖 = Base ⇒  ∀ 𝑡′ ≤ 𝑡: 𝑥𝑗 + 𝑡′ = 𝐵 ⇒ 𝑡′ = 𝑡  ∧  

– (𝑞𝑖 = Final ⇒  ∀ 𝑡′ ≤ 𝑡: 𝑥𝑗 + 𝑡′ = 𝐿 ⇒ 𝑡′ = 𝑡  ∧  

– … ∧ 

– 𝑥′𝑗 =  𝑥𝑗 + 𝑡  

• 𝑇 𝒙, 𝒙′ =
𝑇 𝑁, 𝐹𝑙𝑦, 𝐻𝑜𝑙𝑑3𝐿  ∨ 𝑇 𝑁, 𝐹𝑙𝑦, 𝐻𝑜𝑙𝑑3𝑅 ∨ 
𝑇 𝑁, 𝐻𝑜𝑙𝑑3𝐿, 𝐻𝑜𝑙𝑑2𝐿 ∨ … ∨ 𝑇𝑟𝑎𝑗𝑠(N) 

 

 

 

 

 

 

• Time transitions 

• Transition relation is the disjunction of all 
discrete transitions and the time transition 

Fly 

Hold3L 

nexti = tail; 

tail:= i 

xi ≥ B 



Reachability Algorithm 

BR = ¬ 𝑆 // S: property 

While  

 If 𝐵𝑅 ∧ 𝐼𝑛𝑖𝑡 is SAT then return UNSAFE 

 // Safety check 

  Else BR = BR ∨ ∃ x’: T x, x′  /\ BR(x’)
 𝑃’ =  𝑃 ∨  𝐵𝑅 

 If ¬(P’⟹ 𝑃) is UNSAT then return SAFE 

 // Fixpoint check 

  Else P = P’ repeat 

 

Every inductive invariant that is proved is conjuncted  to the 
next invariant for strengthening 

  



When is termination guaranteed? 

• Depends on the format of the safety property  

• If it is of the form ∃i ∈  [N]:P(i) and Pre 
computation is also of the form ∃i ∈  [N]:Q(i) 

• And, there is only discrete interaction amongst 
Ai then we can reach a fixpoint 

• For SATS, several properties bound the 
number of aircrafts that can actually be 
present in the system 



Verification Methodology 

• Model Checker Modulo Theories (MCMT) 
– Performs satisfiability checks of formulas using the satisfiability 

modulo theories (SMT) solver Yices 

– Supports real parameters (needed for timed dynamics) 

• Provide a list of properties 
– Main property is separation assurance 

– Python script calls MCMT to prove a property from this list 

– If the property is established, script assumes this property in 
subsequent calls to MCMT, then tries another property in the list 

 

 



Properties and Runtimes 

Property Runtime (s) Memory (MB) 

No more than four aircraft in system 25.95 10 

No two aircrafts violate separation 283.08 32 

No more than two aircraft on the left (right) 24.50 5 

At most one aircraft in each holding zone 0.81 4 

No more than two aircraft on a missed 
approach on the left (right) 

491.61 274 



Conclusions & Ongoing Work 

• SATS: A Benchmark for distributed cyber-physical system  

• Our modeling framework: Networks of Hybrid Automata with 
discrete (atomic) interactions 

• Verification: Parameterized backward reachability 

– Derived bounds aid termination 

• Challenges: Termination & Liveness in parameterized systems 

• Ongoing work:  

– Small Model Results [Forte/FMOODs paper to appear] 

– Z3-based tool implementation 

– Application to mobile peer-to-peer applications 



Questions? 

 



𝒜𝑖: Aircraft Hybrid Automaton 
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Example: Fischer’s Protocol 

• Timed mutual exclusion protocol 
– 4 states: initial, waiting, trying, critical section 
– 1 real-valued clock per process 
– 1 globally shared (atomic) variable, v, ranging over process ids 
– Process ids: {1, …, n} 
– Safety property: at most one process is in critical section 

init wait try cs 

v := 0 

v ≠ i 

v = 0 
ti := 0 

ti < 1 
ti := 0 
v := i 

v = i  ti > 1 

initiate choose enter 

exit fail 



Termination Example 

• Parameterized finite state machines 



Termination Example (cont) 


